
Faim Finite Element Analysis Manual

Eric Nodwell and Steven K. Boyd
Numerics88 Solutions Ltd.

Version 9.0

Faim Finite Element Analysis Manual ii

Copyright © Copyright (c) 2020, Numerics88 Solutions Ltd.
Revision date: 2021-06-18

Faim Finite Element Analysis Manual iii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 How to read this manual . 1

1.3 What is new in version 9 . 1

1.4 Installation . 2

1.4.1 Install the solvers and n88modelgenerator . 2

1.4.2 How to run the solvers . 2

1.4.3 Install a license file . 3

1.4.4 Install n88tools and vtkbone . 3

1.4.5 Install the Numerics88 plugins for ParaView . 4

1.4.6 Additional downloads . 6

1.5 Work flow for finite element analysis . 6

1.5.1 Segmentation . 7

1.5.2 Model generation . 8

1.5.3 Finite element solver . 8

1.5.4 Post-processing and visualization . 9

1.6 Units in Faim . 9

2 Preparing Finite Element Models With n88modelgenerator 10

2.1 Running n88modelgenerator . 10

2.2 Test orientation . 11

2.3 Standard tests . 12

2.3.1 Uniaxial test . 13

2.3.2 Axial test . 13

2.3.3 Confined test . 13

2.3.4 Symmetric shear test (symshear) . 14

2.3.5 Directional shear test (dshear) . 14

2.3.6 Bending test . 15

2.3.7 Torsion test . 16

2.4 Uneven surfaces . 17

Faim Finite Element Analysis Manual iv

2.5 Material specification . 17

2.5.1 Elastic material properties . 17

2.5.2 Plasticity . 19

2.5.3 Material table generation . 20

2.5.4 Material definitions file . 21

3 Preparing Finite Element Models with vtkbone 23

3.1 vtkbone API documentation . 24

3.2 Array indexing in vtkbone . 24

3.3 Typical workflow for vtkbone . 24

3.4 The vtkboneFiniteElementModel object . 26

3.5 Reading a segmented image . 27

3.6 Reading an unsegmented image and segmenting it . 28

3.7 Ensuring connectivity . 28

3.8 Generating a mesh . 29

3.9 Defining materials . 30

3.10 Constructing a material table . 31

3.11 Creating a finite element model . 32

3.12 Creating node and element sets . 32

3.13 Adding boundary conditions . 33

3.14 Adding applied loads . 34

3.15 Optional: Adding a convergence set . 35

3.16 Ensuring your model is well-defined . 36

3.17 Setting post-processing parameters . 36

3.18 Filters for creating standard tests . 37

3.19 Modifying a finite element model . 38

3.20 Updating the history and the log . 38

3.21 Writing a model file for input to the solver . 39

3.22 Visualizing intermediate results . 39

3.23 Error handling . 39

4 Solving Linear Problems 41

4.1 Obtaining solutions to linear problems using n88solver_slt . 41

4.2 Convergence . 41

4.3 Evaluating solution quality . 42

5 Solving Nonlinear Problems 44

5.1 Obtaining solutions to nonlinear problems with n88solver_spt . 44

5.2 Convergence . 44

5.3 Obtaining accurate nonlinear solutions by progressively applying loads . 45

5.4 Evaluating nonlinear solution quality . 45

Faim Finite Element Analysis Manual v

6 Post-Processing and Analysis 47

6.1 Calculating additional solution fields with n88derivedfields . 47

6.2 Exporting solution fields from the model file . 48

6.3 Obtaining standard post-processing values with n88postfaim . 48

6.3.1 Running n88postfaim . 48

6.3.1.1 Specifying post-processing node and element sets . 49

6.3.1.2 Specifying a rotation center . 50

6.3.2 Description of output tables . 51

6.3.2.1 Model Input . 51

6.3.2.2 Materials . 51

6.3.2.3 Post-processing sets . 52

6.3.2.4 Strain . 52

6.3.2.5 Plastic Strain . 53

6.3.2.6 Stress . 54

6.3.2.7 Strain Energy Density . 55

6.3.2.8 Von Mises Stress . 56

6.3.2.9 Nodal Displacements . 56

6.3.2.10 Nodal Forces . 57

6.3.2.11 Nodal Twist . 57

6.3.2.12 Nodal Torques . 58

6.3.2.13 Load Sharing . 59

6.4 Tabulating results from analysis files . 60

7 Tutorials 61

7.1 Introductory tutorial: Compressing a solid cube . 62

7.1.1 Generating the model . 63

7.1.2 Solving the model . 64

7.1.3 Visualizing the results with ParaView . 65

7.1.4 Obtaining numerical values from the analysis file . 68

7.2 Tutorial: Compression test of a radius bone slice . 70

7.2.1 Generating the model . 72

7.2.2 Solving the model . 76

7.2.3 Evaluating the accuracy of the solution . 78

7.2.4 Obtaining additional solution fields with n88derivedfields . 78

7.2.5 Using n88postfaim to generate the analysis file . 79

7.2.6 Determining load sharing distribution with n88postfaim . 79

7.2.7 Enabling compression for large model files . 80

7.3 Tutorial: Bending test of a radius bone with an uneven surface . 80

7.3.1 Generating the model with n88modelgenerator . 81

Faim Finite Element Analysis Manual vi

7.3.2 Using n88extractsets to obtain and visualize boundary conditions . 82

7.3.3 Numerical results . 86

7.4 Tutorial: Radius bending with elasto-plastic material properties . 87

7.4.1 Creating the model . 87

7.4.2 Solving the model . 88

7.4.3 Rendering yielded elements . 88

7.4.4 Numerical results . 91

7.4.5 A more careful calculation: incrementally applying the load . 92

7.5 Tutorial: Compressing a cube revisited using vtkbone . 94

7.5.1 Getting familiar with Python, VTK and Numpy . 94

7.5.2 Preliminaries: first lines of Python . 94

7.5.3 Reading the input file . 96

7.5.4 Ensuring connectivity . 97

7.5.5 Generating a mesh . 97

7.5.6 Defining materials and creating a material table . 98

7.5.7 Applying a compression test . 98

7.5.8 Writing an n88model file . 99

7.5.9 Modifying the file history and log . 99

7.6 Tutorial: Deflection of a cantilevered beam; adding custom boundary conditions and loads 101

7.6.1 Importing the required python modules . 101

7.6.2 Setting command line options . 101

7.6.3 Generating the image data . 102

7.6.4 Generating a base model without boundary conditions . 103

7.6.5 Adding fixed boundary conditions . 104

7.6.6 Adding an applied load to tip of the beam . 106

7.6.7 Adding a convergence set . 106

7.6.8 Specifying sets for post-processing . 107

7.6.9 Documenting the model in the file log . 107

7.6.10 Solving the problem and comparing with theory . 108

7.7 Tutorial: A cantilevered beam with elastoplastic material properties . 109

7.7.1 Analytic solution . 110

7.7.2 Changes to the generation script . 110

7.7.3 Generating the model and verifying the material . 110

7.7.4 Solving the model . 111

7.7.5 Plastic strain distribution . 111

7.7.6 Comparison of finite element and analytic results . 111

7.7.7 Incremental loading and hysteresis . 113

7.8 Advanced custom model: A screw pull-out test . 118

7.8.1 The model: a screw pull-out test . 119

Faim Finite Element Analysis Manual vii

7.8.2 Preliminaries: first lines of Python . 120

7.8.3 Using a configuration file to store parameters . 120

7.8.4 Reading the segmented image file . 122

7.8.5 Converting the image data to elements . 123

7.8.6 Defining material properties . 123

7.8.7 Creating a vtkboneFiniteElementModel object . 123

7.8.8 Writing an n88model file . 124

7.8.9 Adding history and log fields . 124

7.8.10 Determining the screw orientation . 125

7.8.11 Adding a boundary condition: applying a displacement to the screw end 126

7.8.12 Fixing the nodes in a ring on the bone surface . 127

7.8.13 Adding a convergence set . 132

7.8.14 Specifying sets for post-processing . 133

7.9 Tutorial: Radius compression with transformed boundary conditions for longitudinal bone strength estimates . . 133

7.9.1 Script setup . 134

7.9.2 Optional function: Messages with a time stamp . 135

7.9.3 Utility function: Read a material file . 135

7.9.4 Model generator function: First steps . 136

7.9.5 Model generator function: Apply transformed boundary conditions . 139

7.9.6 Model generator function: Define model outputs and write n88model file 140

7.9.7 Main function: Process input variables and call model generator function 141

7.9.8 Example: Registered FE in practice . 142

7.9.9 Post-processing . 145

7.10 Additional examples . 146

8 Special Topics 147

8.1 Efficient Handling of Large Numbers of Material Definitions . 147

8.2 Direct Mechanics . 148

8.3 Pistoia Failure Load Estimate . 151

9 Command Reference 154

9.1 faim . 154

9.2 n88coarsen . 156

9.3 n88copymodel . 157

9.4 n88compress . 158

9.5 n88derivedfields . 158

9.6 n88directmechanics . 158

9.7 n88evaluate . 160

9.8 n88extractfields . 160

Faim Finite Element Analysis Manual viii

9.9 n88extractsets . 162

9.10 n88interpolatesolution . 162

9.11 n88modelgenerator . 162

9.12 n88modelinfo . 167

9.13 n88pistoia . 168

9.14 n88postfaim . 168

9.15 n88solver (_slt, _sla and _spt) . 169

9.16 n88tabulate . 171

10 Bibliography 176

10.1 Books . 176

10.2 Articles . 176

A Upgrading from previous versions 179

A.1 Upgrading from Faim version 7 . 179

A.1.1 Changing from vtkn88 to vtkbone . 179

A.2 Upgrading from Faim version 6 . 179

A.2.1 Updating version 6 vtkn88 scripts to work with version 7 . 179

A.3 Upgrading from Faim version 5 . 179

A.3.1 Converting Faim version 5 file formats . 179

A.3.2 Updating 5 vtkn88 scripts to work with 6 . 180

B n88model File Format 182

B.1 Converting a n88model file to and from a text file . 182

B.2 Example n88model file in CDL text format . 182

B.3 Specification . 189

B.3.1 Root group . 189

B.3.2 MaterialDefinitions group . 190

B.3.3 Parts group . 192

B.3.4 Constraints group . 193

B.3.5 Sets group . 194

B.3.6 Problems group . 194

B.3.7 Solutions group . 195

B.4 Writing code to read and write n88model files . 196

C Automating the Processing of Multiple Models With Scripts 197

C.1 A script to generate a mesh and solve it . 197

C.2 Scripting several models . 199

C.3 Unattended execution of scripts . 200

11 Index 201

Faim Finite Element Analysis Manual ix

Faim Finite Element Analysis Manual 1 / 206

Chapter 1

Introduction

1.1 Overview

Faim is a finite element solver optimized for solid mechanics simulations of bone, including strength and stiffness determinations,
directly from three-dimensional medical image data such as micro-CT. Faim uses the mesh-free method, which is a highly
memory efficient method of finite element analysis. This makes it possible to solve finite element models with very large
numbers of degrees of freedom derived directly from high resolution scans.

The Faim Finite Element solver has an established record of being used in scientific studies. See the bibliography for selected
studies.

1.2 How to read this manual

1. If you need to install Faim, refer to Installation in this chapter.

2. Experienced users may want to read Section 1.3, and then go directly to the sections indicated there.

3. For new users, start by reading the section Section 1.5. This will give you an overview of finite element analysis and the
Numerics88 software tools.

4. Next, we recommend that you jump first to An introductory tutorial: compressing a solid cube. It will take you through the
typical steps of generating a model, verifying it, solving it, and analyzing the results. This is a good introduction to how
everything fits together, and will help to put things into context.

5. The intervening chapters (preceeding the Tutorials chapter) should be used as reference material. You probably don’t want
to read them from beginning to end in one sitting with the intention of retaining everything; however, you should at least
skim through them to be aware of the options, limitations and potential pitfalls.

6. If you are a user who is familiar with n88modelgenerator and who is interested in creating your own custom models,
start with the tutorial, Compressing a cube revisited using vtkbone. And then move on to the more advanced tutorials
dealing with vtkbone.

1.3 What is new in version 9

Version 9 introduces the following new features:

1. n88pistoia allows the user to set different critical strain and critical volume values when estimating failure load.

2. Code segments have been updated for newer versions of VTK (8.2.0) and Python (3.7). For example, the print statements
used in Python 3 are different than Python 2.

Faim Finite Element Analysis Manual 2 / 206

1.4 Installation

In version 9, the installation of Faim is more modular than in previous versions.

1.4.1 Install the solvers and n88modelgenerator

The solvers and n88modelgenerator are the non-open sourced components of Faim and require a license file to run. They are
bundled together into installers that can be downloaded from https://numerics88.com/downloads/ .

Linux The Linux installer will be named something like faim-9.0-linux.sh. It can be installed with the following com-
mand for a single user:

bash faim-9.0-linux.sh

For a system-wide installation, add sudo:

sudo bash faim-9.0-linux.sh

If you want to specify a particular install location, use the --prefix flag, for example

bash faim-9.0-linux.sh --prefix=$HOME/Numerics88

Windows The Windows installer will be named something like faim-9.0-windows.exe. Simply run it to install.

macOS The Mac installer is a disk image with a name like faim-9.0-windows.dmg. Double-click to mount it, and then
drag the Faim icon to the Applications folder, or to any other convenient location.

For all operating systems, it is possible to install Faim system-wide using an administrator account or for a single user, for which
administrator rights are not needed. It is also possible to install it multiple times on a single machine, so that each user has their
own installation. The installation directory can also be freely renamed and moved around.

1.4.2 How to run the solvers

To run the solvers and n88modelgenerator, you may use any of the following methods:

1. Run them with the complete path. For example

/path/to/faim/installation/n88modelgenerator

or, on Windows

"c:\Program Files\Faim 9.0\n88modelgenerator"

2. Permanently add the directory where they are installed to your PATH variable. The exact method depends on your operating
system.

3. Run the script setenv in a Terminal (or Command Prompt on Windows) to set the PATH just for that Terminal. On Linux
and macOS, this is done as follows

source /path/to/faim/installation/setenv

On Windows, if you are using a Command Prompt, then you can run

"c:\Program Files\Faim 9.0\setenv.bat"

while for Windows PowerShell, the equivalent is

. "c:\Program Files\Faim 9.0\setenv.ps1"

Note
In version 9, the solvers and n88modelgenerator are statically linked. Setting LD_LIBRARY_PATH (Linux) or DYLD_LI-
BRARY_PATH (macOS) is no longer required.

https://numerics88.com/downloads/

Faim Finite Element Analysis Manual 3 / 206

1.4.3 Install a license file

To receive a license file, you must run one of the Faim programs with the --license_check option, and send the resulting UUID
to skboyd@ucalgary.ca . For example,

> n88modelgenerator --license_check
n88modelgenerator Version 9.0
Copyright (c) 2010-2020, Numerics88 Solutions Ltd.
Host UUID is DFD0727B-89AA-4808-B03F-E73E80ABFE64

When you receive a license file, which is a short text file, you can copy it to one of several possible locations where the software
can find it. These locations are:

1. a subdirectory licenses of the installation directory, or

2. the location specified by the environment variable NUMERICS88_LICENSE_DIR, if set,

3. for an individual user, a directory Numerics88/licenses (Numerics88\licenses on Windows) in their home
directory, or

4. on Linux, /etc/numerics88/licenses, or

5. on macOS, /Library/Application Support/Numerics88/licenses, or $HOME/Library/Applica-
tion Support/Numerics88/licenses, or

6. on macOS, /Users/Shared/Numerics88/licenses.

You may have multiple license files installed at once.

1.4.4 Install n88tools and vtkbone

The solvers and n88modelgenerator are most conveniently used together with a collection a command-line utilities called
n88tools. n88tools is implemented in Python, and depends on the library vtkbone. Additionally, vtkbone can be
used to create custom model generation and processing scripts in Python, as will be discussed in a subsequent chapter.

n88tools and vtkbone are open-source. If you wish, you can download the source code from https://github.com/Numerics88/-
and compile them yourself, using whatever installation of Python is most convenient for you. Most users however, will not want
to go through the hassle of compiling them. The quickest way to install them is via Anaconda Python, which is supported on
Linux, Windows, and macOS. An advantage of using Anaconda Python is that the very large repository of mathematical and
scientific Python packages available in Anaconda Python can be used together with Faim. To install n88tools and vtkbone
in Anaconda Python, follow these steps:

1. Install Anaconda Python from https://www.anaconda.com/distribution/ . It is also possible to install Miniconda (http://conda.pydata.org/-
miniconda.html). Miniconda is identical to Anaconda, except that instead of starting with a very large set of installed
python packages, it starts with a minimal set. You can of course add or subtract packages to suit your needs. Anaconda
Python can be installed either system-wide, or just for an individual user. Faim works with either arrangement.

2. Create an Anaconda environment in which to run Faim. To learn about Anaconda environments, we recommend that
you take the conda test drive at http://conda.pydata.org/docs/test-drive.html . Creating an Anaconda environment for
Faim is optional; you could alternatively install n88tools and vtkbone directly in the root environment of Anaconda.
However, using a dedicated enivornment greatly helps with avoiding possible conflicts, where for example vtkbone
may want a specific version of a dependency, while some other Python package that you want to use requires a different
version of the same dependency. In addition, you can create separate environments for different versions of n88tools
and vtkbone, and easily switch between them. To create an Anaconda environment named faim-9.0 and install
n88tools version 9.0 and vtkbone all in one step, run the following command:

conda create --name faim-9.0 --channel numerics88 --channel conda-forge python=3.7 ←↩
n88tools numpy scipy

mailto:skboyd@ucalgary.ca
https://github.com/Numerics88/
https://github.com/Numerics88/
https://www.anaconda.com/distribution/
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/test-drive.html

Faim Finite Element Analysis Manual 4 / 206

To use n88tools, you simply activate the Anaconda environment. On Linux and macOS, this is done with

conda activate faim-9.0

On Windows, the command is

activate faim-9.0

You will have to activate the environment in each Terminal (or Command Prompt) in which you want to use Faim.

1.4.5 Install the Numerics88 plugins for ParaView

ParaView can be used for interactive rendering of Faim finite elements models. For this purpose, Numerics88 provides plugins
for ParaView. These allow ParaView to open n88model files (as well as Scanco AIM files). The plugins can be downloaded
from http://numerics88.com/downloads/ . You can unzip the plugins into any convenient directory, and you can move and rename
the plugin directory as you like.

Important
The ParaView plugins are specific to a particular version of ParaView and can not be loaded into a different version of
ParaView.

To load the plugins, open ParaView, and select the menu item Tools→Manage Plugins. The Plugin Manager will appear, as
shown in Figure 1.

http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 5 / 206

Figure 1.1: ParaView’s Plugin Manager

Click Load New. . . and navigate to the location of the plugins. Select one of the plugins, and then click OK. You will need to
repeat this for each of the plugins, in particular for

• libAIMReader ,

• libImageGaussianSmooth , and

• libN88ModelReader .

They are now loaded, and you should be able to read to corresponding file formats. You may want to select Auto Load for
each plugin so that you don’t need to load them every time you open Paraview. To do this, click the drop-down arrow beside the
plugin in the Plugin Manager, and make sure that Auto Load is selected. This is shown in Figure 2.

Faim Finite Element Analysis Manual 6 / 206

Figure 1.2: Selecting Auto Load in ParaView’s Plugin Manager

1.4.6 Additional downloads

A PDF version of this manual can be downloaded from http://numerics88.com/documentation/ .

Example data files, together with scripts for the tutorials in this manual, can be downloaded from http://numerics88.com/-
downloads/ .

1.5 Work flow for finite element analysis

There are several steps involved in applying finite element analysis to 3D medical image data. These steps are diagrammed
in Figure 3. Generally they can be categorized as pre-processing, solving, and post-processing. Faim integrates these steps to
simplify the work flow as much as possible, while retaining flexibility and customizability in preparing, solving and analyzing
finite element problems derived from micro-CT data.

http://numerics88.com/documentation/
http://numerics88.com/downloads/
http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 7 / 206

micro-CT clinical CT MRI

IPL (Scanco)

CT-analyser (Skyscan)

ITK

third party tools

manufacturer’s tools other options

n88modelgenerator vtkbone library

standard model custom model

n88solver

n88derivedfields

n88postfaim Paraview other tools

Image Source

Segmentation

Model Generation

Finite Element Solver

Postprocessing
and Visualization

P
re

-P
ro

c
e
s
s
in

g

Figure 1.3: Work flow for FE analysis of micro-CT data.

1.5.1 Segmentation

The first step is to segment your 3D medical image data. Although in principle any type of 3D image data can be analyzed, we
focus on the use of micro-CT images of bone here. During segmentation, bone and other relevant structures in the CT image
are labelled and identified. Segmentation is a very broad and complex field. Because of this, Numerics88 software does not
attempt to provide all solutions. Instead, we recommend that you use the segmentation tool provided by the manufacturer of your
medical image equipment. This has the advantage that it will be well-integrated into the scanning workflow. In the case of Scanco
systems, the tool is Image Processing Language (IPL); for Skyscan systems, CT-analyzer provides segmentation functionality.

In cases where your segmentation problem is unusually tricky and beyond the abilities of the manufacturer’s tools, there are many

Faim Finite Element Analysis Manual 8 / 206

third party solutions available.

Whichever tool you use to perform the segmentation, the result should be a 3D image file with integer values. These integer
values are referred to as "Material IDs", because they will subsequently be associated with abstract mathematical material models.
Material ID zero indicates background material (often air, but sometimes also other material, such as marrow in bone) that can
be assumed to have negligible stiffness. Voxels with material ID zero will not be converted to elements in the FE model. Other
values can be associated freely with particular materials or material properties as required.

1.5.2 Model generation

Model generation is the process of converting a segmented image to a geometrical representation suitable for finite element
analysis, complete with suitable constraints such as displacement boundary conditions and applied loads.

A number of steps are required for complete model generation.

Meshing
Meshing is the process of creating a geometric representation of the model as a collection of finite elements. For micro-CT
data, we typically convert each voxel in the input image to a hexahedral (box-shaped) element in the FE model. Each of
the corners of the voxel becomes a node in the FE model. Voxels labelled as background (e.g. 0) are ignored.

Tip
There may be scenarios in which it is desirable to have FE models that have elements smaller or larger than the voxels of
the available image. Larger elements lead to smaller FE models (i.e. fewer degrees of freedom) which may solve faster, at
the expense of accuracy. Smaller elements allow the forces and displacements to vary more smoothly (that is, with higher
resolution) in the FE model, at the cost of increased solution time and memory requirements. To alter the FE model from the
original 3D image, one typically resamples the original image to the desired resolution employing some sort of interpolation.

Material Assignment
Material assignment is the process of mapping material IDs to mathematical models for material properties. For example,
an isotropic material is specified by its Young’s modulus (E) and Poisson’s ratio (ν).

Assigning Boundary Conditions and Applied Loads
Boundary conditions and applied loads implement a specific mechanical test. The tool used will typically translate a
desired physical action, such as a force or a displacement applied to a specific surface, into a set of constraints on a set of
nodes or elements.

Faim provides two tools for model generation:

n88modelgenerator
n88modelgenerator is a program that can generate a number of standard tests (e.g. axial compression, confined
compression, etc. . .). n88modelgenerator has a number of options that allow for flexibility in tweaking these standard
models. n88modelgenerator is the easiest method of generating models.

vtkbone
vtkbone is a collection of custom VTK objects that you can use for creating models, and is a more advanced alternative
to using n88modelgenerator. In order to use them, you need to write a program or script (typically in Python).
Some learning curve is therefore involved, as well as the time to write, debug and test your programs. The advantage is
nearly infinite customizability. VTK objects, including vtkbone objects, are designed to be easily chained together into
execution pipelines. In this documention, we will give many examples of using vtkbone in Python scripts.

1.5.3 Finite element solver

The finite element solver takes the input model and calculates a solution of the displacements and forces on all the nodes, subject
to the specified constraints.

As finite element models derived from micro-CT can be very large, the memory efficiency and speed of the solver are important.
Faim uses a mesh-free preconditioned conjugate gradient iterative solver. This type of solver is highly memory efficient.

http://vtk.org

Faim Finite Element Analysis Manual 9 / 206

Note
Faim is currently limited to small-strain solutions of models with linear and elastoplastic material definitions. This is adequate
for most bone biomechanics modelling purposes, as bone undergoes very little strain before failure. However, if you need to
accurately model large deformations, the Faim solver is not an appropriate tool.

1.5.4 Post-processing and visualization

Post-processing and visualization can take many different forms, depending on the goals of your analysis. For example, you may
want to identify locations of stress variations, in which case, a visualization tool is likely the best approach. Or, you may want to
obtain a basic output such as an overall stiffness. A number of common post-processing operations are performed by Faim.

Visualization is important even in cases where ultimately you want one or more quantitative values. Visualization provides a
conceptual overview of the solution, and may allow one to quickly identify incorrect or invalid results due to some deficiency in
the input model. Many visualization software packages exist. If you don’t have an existing favourite package, we recommend the
use of ParaView, which is an open-source solution from Kitware. The Faim distribution includes plug-ins for ParaView which
allow ParaView to directly open Faim file types.

1.6 Units in Faim

Faim is intrinsically unitless; you may use any system of units that are self-consistent.

Nearly all micro-CT systems use length units of millimetres (mm). With forces in Newtons (N), the consistent units for pressure
are then megapascals (MPa), as 1N/(1mm)2 = 1MPa. Young’s modulus is an example of a quantity that has units of pressure. In
the examples, we will consistently use these units (mm, N, MPa).

http://paraview.org
http://kitware.com

Faim Finite Element Analysis Manual 10 / 206

Chapter 2

Preparing Finite Element Models With n88modelgenerator

2.1 Running n88modelgenerator

n88modelgenerator is a tool to create a number of different standard mechanical test simulations directly from segmented 3D
images. This tool is designed to be simple to use and in many cases, requires no more than specifying a test type and an input
file, like this

n88modelgenerator --test=axial mydata.aim

This will generate a file mydata.n88model that is suitable as input to the Faim solver.

Tip
For an introduction to n88modelgenerator, we recommend that you start first with An introductory tutorial: compressing a solid
cube. Getting your hands dirty as it were with the program is often the best way to learn. Once you have some familiarity with
the program, the following documentation will make much more sense.

The models produced by n88modelgenerator can be modified and tuned by specifying a number of optional parameters. For
example, here n88modelgenerator is run to create an axial test with a specified compressive strain and Young’s modulus:

n88modelgenerator --test=axial --normal_strain=-0.01 --youngs_modulus=6829 test25a.aim

Parameters can be specified either on the command line, or in a configuration file. Command line arguments must be preceded
with a double dash (--). The argument value can be separated from the argument name with either an equals sign (=) or a space.
A complete list of all possible arguments is given in the Command Reference chapter. You can also run n88modelgenerator with
the --help option to get a complete list of possible parameters. All parameters except the input file name are optional; a default
value will be used for unspecified parameters. To use a configuration file, run n88modelgenerator as follows.

n88modelgenerator --config=mytest.conf test25a.aim

Here we are specifying the name of the input file on the command line. This is convenient if we want to use the same configuration
file for multiple input files. It is also possible to specify the name of the input file in the configuration file, using the option input_-
file. The output file name is left unspecified, so a default value will be used (test25a_axial.n88model in this case), but it
can also be specified either on the command line or in the configuration file if desired.

The configuration file format is one line per option: the parameter name (without leading dashes), followed by the equals
character (=), followed by the parameter value. Lines beginning with # are ignored. The following configuration file is exactly
equivalent to the example above using command line parameters.

Example configuration file for n88modelgenerator

Faim Finite Element Analysis Manual 11 / 206

This is the example configuration file "mytest.conf"
test = axial
normal_strain = -0.01
youngs_modulus = 6829

Note
If a parameter is specified on both the command line and in a configuration file, the command line value takes precedence.

n88modelgenerator can accept several different input file formats. Refer to the Command Reference chapter for details.

Tip
If you have an input image in a different format, there are many possible solutions. One is to convert the file format, possibly
with ParaView, which can read a large number of formats. VTK can also be used to convert many image files. For example, the
following python script will convert a MetaImage format file to a VTK .vti file.

import vtk
reader = vtk.vtkMetaImageReader()
reader.SetFileName ("test.mhd")
writer = vtk.vtkXMLImageDataWriter()
writer.SetFileName ("test.vti")
writer.SetInputConnection (reader.GetOutputPort())
writer.Update()

For more information on scripting, refer to Preparing Finite Element Models With vtkbone.

2.2 Test orientation

To allow for flexibility in defining the orientation of applied tests, two coordinate frames are defined:

Data Frame
The Data Frame is the coordinate frame of the data. The input and output data use the same coordinate system.

Test Frame
The Test Frame is the coordinate frame in which the test boundary conditions are applied. Tests are defined with a constant
orientation in the Test Frame.

The relationship between the Test Frame and the Data Frame is set by the value of the parameter test_axis according to the
following figure. In the figure, the red-colored axis is the test axis. What this implies exactly depends on the kind of test that is
being applied. For example, for a compression test, the direction of compression is along the test axis. The test axis is always
the z axis in the Test Frame, and always equal to value of the parameter test_axis in the Data Frame. The default value for
test_axis is z ; for this case the Test Frame and the Data Frame coincide, as shown.

Faim Finite Element Analysis Manual 12 / 206

test_axis = x

y

x
z

z

y
x

test_axis = y

x

z
y

z

y
x

test_axis = z

z

y
x

z

y
x

Test Frame Data Frame

Figure 2.1: Coordinate frames Test Frame and Data Frame as set by the option test_axis.

In the test descriptions, references to “Top” refer to the maximum z surface in the Test Frame; References to “Bottom” refer to
the minimum z surface in the Test Frame. Likewise “Sides” refers to the surfaces normal to the x and y axes in the Test Frame.

The Test Frame is used only for the specification of tests (i.e. a specific configuration of boundary conditions and applied loads)
within n88modelgenerator and vtkbone. When the model is written to disk as an n88model file, it is encoded with reference
to the original Data Frame. As a consequence post-processing and visualization are in the original Data Frame.

Note
In terms of rotations, for a setting of test axis = x, the transformation from the Test Frame to the Data Frame is a rotation of -90º
about the x axis, followed by a -90º rotation about the z’ axis. For a setting of test axis = y, the transformation from the Test
Frame to the Data Frame is a rotation of 90º about the y axis, followed by a 90º rotation about the z’ axis. These transformation
sequences are of course not unique. For most applications, it is not necessary to know these transformations; it should be
sufficient to refer to Figure 4.

2.3 Standard tests

Important
Axis directions in the following test descriptions are in the Test Frame. All the standard tests can be applied along any
axis of the data by specifying test_axis, as described in the previous section.

Faim Finite Element Analysis Manual 13 / 206

2.3.1 Uniaxial test

A uniaxial test is a compression (or tension) test with a fixed displacement or force applied along the z axis. Two boundary
conditions are applied:

1. Nodes on the bottom surface are fixed in the z direction, but free in the x and y directions.

2. Nodes on the top surface are subject to a fixed displacement in the z direction. No constraints are applied to the x and y
directions.

A uniaxial test is shown in Figure 5, along with other types of compression tests. The coordinate system shown in the figure is
the Test Frame. A uniaxial test is distinguished from an axial test (described below) by the fact that nodes on the top and bottom
surfaces are unconstrained laterally. This corresponds to zero contact friction.

The amount of displacement applied to the top surface can be specified by either the normal_strain or displacement parameters.

Important
Uniaxial models are under-constrained since, as defined, arbitrary lateral motion, and arbitrary rotation about the z axis
of the entire model are permitted. This results in a singular system of equations. A "pin" may be added to prevent these
motions. See pin parameter. However, Faim will find a (non-unique) solution even without a pin, and in fact typically
does so faster in the absence of a pin. A pin should always be added if you want to use an algebraic solver, or if you
intend to compare the absolute positions of multiple solved models. Alternatively, you can register the solved models
before comparing absolute positions.

z

y

x

z

y

x

z

y

x

Uniaxial Axial Confined

Figure 2.2: Compression tests.

2.3.2 Axial test

An axial test is similar to a uniaxial test, with the additional constraint that nodes on the top and bottom surfaces are also laterally
fixed (i.e. no movement of these nodes is permitted in the x-y directions). This corresponds to 100% contact friction.

An axial test is shown in Figure 5.

2.3.3 Confined test

A confined test is similar to an axial test, with the addition that nodes on the side surfaces of the image volume are constrained
laterally (i.e. no movement of these nodes is permitted in the x-y directions).

A confined test is shown in Figure 5.

Faim Finite Element Analysis Manual 14 / 206

2.3.4 Symmetric shear test (symshear)

In a symmetric shear test, the side surfaces are angularly displaced to correspond to a given shear strain. This is shown in Figure
6. The only parameter of relevance to a symmetric shear test is shear_strain.

zy

x

Figure 2.3: symshear test. The side faces (shaded) are displaced as shown.

2.3.5 Directional shear test (dshear)

In a directional shear test, the top surface is displaced laterally, as shown in Figure 7. The direction and degree of displacement
are set by the parameter shear_vector, which gives the x,y shear displacement in the Test Frame. Typically shear_vector is
unitless, and the actual displacement is the shear vector scaled by the vertical height of the model (i.e. the image extent in the
z direction in the Test Frame). If however scale_shear_to_height is set to off, then shear_vector is taken to have absolute
units of length.

Faim Finite Element Analysis Manual 15 / 206

z

y

x

Figure 2.4: dshear test. The upper shaded area represents the rigidly translated boundary surface defined by the shear vector
(blue).

2.3.6 Bending test

In a bending test, the top and bottom surfaces are rotated in opposite directions, as shown in Figure 8. The rotation axes are
defined by a neutral axis, given by a point in the x,y plane (shown as C) and an angle in the x,y plane. (The coordinate system
shown in the figure is the Test Frame.) The neutral axis, projected onto the top and bottom surfaces, is indicated in blue in
Figure 8. The point and angle defining the neutral axis can be set in n88modelgenerator with the parameters central_axis and
neutral_axis_angle respectively. The central axis (point C) can be specified as a numerical x,y pair, or as the center of mass or the
center of the data bounds; center of mass is the default setting. The default angle of the neutral axis is 90º, parallel to the y-axis.
The amount of rotation can be specified with the parameter bending_angle. The top and the bottom surfaces are each rotated by
half of this value. Positive rotation is defined as in Figure 8.

In a bending test, the top and bottom surfaces are laterally constrained; no x,y motion of the nodes on these surfaces is permitted.

Faim Finite Element Analysis Manual 16 / 206

C

C

z

y
x

Figure 2.5: Bending test. The shaded areas represent the rigidly rotated boundary surfaces about the neutral axes (in blue). The
neutral axes are defined by the central axis (C-C’) and an angle in the x-y plane.

2.3.7 Torsion test

In a torsion test, the top surface is rotated about the center axis, as shown in Figure 9. The angle of rotation is given by twist_-
angle. In the figure positive rotation is shown. The central axis lies parallel to the z axis in the test frame; its position can be
specified with the parameter central_axis. The default position of the central axis is passing through the center of mass.

z

y
x

C

C

Figure 2.6: torsion test. The upper shaded area represents the rotated boundary surface about the central axis (C-C’).

Faim Finite Element Analysis Manual 17 / 206

2.4 Uneven surfaces

The grey planes in Figure 5 represent the top and bottom boundary surfaces of the image volume. The actual surface to which
boundary conditions are applied is by default that part of your object which passes through these boundaries. If your object does
not intersect with the top and bottom boundaries of the image volume, then no boundary conditions can be applied using this
method.

An alternative is to make use of the parameters top_surface and bottom_surface. The “uneven surface” near a boundary is defined
as the surface visible from that boundary (viewed from an infinite distance). Visibility is evaluated using ray tracing. Thus for a
porous material such as bone the “uneven surface” consists of nodes on the top visible surface, not including nodes on surfaces
down inside the pores.

The visible setting can be used for any type of test except symshear. For example, if used with a bending test, the boundary
conditions are no longer exactly tilted planes as shown in figure Figure 8; the displacement of each node on the visible surfaces
is still calculated as described from its x,y coordinates, but the displaced nodes no longer lie all on a plane (because the initial
positions are not on a plane.)

Because the visibility test may find some surfaces far from the boundary in question, it should usually be used together with the
parameters bottom_surface_maximum_depth and/or top_surface_maximum_depth. These provide a limit, as a distance from the
boundary, for the search for the uneven surface.

2.5 Material specification

Material specification consists of two parts:

Material Definition creation
One or more material definitions are created. A material definition is a mathematical description of material mechanical
properties. It has a definite type (e.g. linear isotropic or linear orthotropic) and specific numerical values relevant to that
type (e.g. a linear isotropic material definition will have particular values of Young’s modulus and Poisson’s ratio).

Material Table generation
The material table maps material IDs, as assigned during segmentation, to material definitions. It is possible to combine
different types of materials (e.g. isotropic and orthotropic) in the same material table. A single material definition can be
assigned to multiple material IDs.

In Numerics88, material definitions are indexed by name. This is not usually evident in n88modelgenerator, as for basic
usage, the names are generated automatically, and are not needed by the user. However for advanced material specification, this
becomes important, as we will see below when material definition files are discussed.

2.5.1 Elastic material properties

Linear elastic materials obey Hooke’s Law,

εxx
εyy
εzz
γyz
γzx
γxy

= S

σxx
σyy
σzz
σyz
σzx
σxy

where εxx,εyy,εzz are the engineering normal strains along the axis directions, γyz,γzx,γxy are the engineering shear strains, and
σ ij are the corresponding stresses. S is the compliance matrix. The inverse of S gives σ in terms of ε , and is the stress-strain
matrix C, also sometimes called the stiffness matrix.

Isotropic materials

Faim Finite Element Analysis Manual 18 / 206

An isotropic material has the same mechanical properties in every direction. Elastic isotropic materials are characterized by only
two independent parameters: Young’s modulus (E) and Poisson’s ratio (ν). The compliance matrix is

S =
1
E

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1−ν) 0 0
0 0 0 0 2(1−ν) 0
0 0 0 0 0 2(1−ν)

For n88modelgenerator the isotropic elastic parameters are set with youngs_modulus and poissons_ratio. The default values are
6829 MPa and 0.3, as reported by MacNeil and Boyd (2008).

An isotropic material definition is the default, and will be assumed if no other material type is specified.

Orthotropic materials

Orthotropic elastic materials have two or three mutually orthogonal twofold axes of symmetry. The compliance matrix is

S =

1/Ex −νyx/Ey −νzx/Ez 0 0 0
−νxy/Ex 1/Ey −νzy/Ez 0 0 0
−νxz/Ex −νyz/Ey 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gzx 0
0 0 0 0 0 1/Gxy

where

Ei is the Young’s modulus along axis i ,
ν ij is the Poisson’s ratio that corresponds to a contraction in direction j when an extension is applied in

direction i ,
Gij is the shear modulus in direction j on the plane whose normal is in direction i . It is also called the

modulus of rigidity.

Note that the ν ij are not all independent. The compliance matrix must be symmetric, hence

−νyx/Ey =−νxy/Ex ,

−νzy/Ez =−νyz/Ey ,

−νxz/Ex =−νzx/Ez .

Therefore only 9 independent parameters are required to fully specify an orthotropic material.

For n88modelgenerator the orthotropic elastic parameters are set with orthotropic_parameters. Whenever this parameter is spec-
ified, an orthotropic material definition will be used.

Note
An orthotropic material defined with a compliance matrix as given above necessarily has its axes of symmetry aligned with the
coordinate axes. In contrast, an orthotropic material which is rotated relative to the coordinate axes has a more general form
of compliance matrix. In Numerics88 software, such a non-aligned orthotropic material must be specified as an anisotropic
material. A rotation matrix relates elements of the anisotropic compliance matrix to the orthotropic compliance matrix. If you
want the mathematical details, please contact us!

Anisotropic material

The most general form of an elastic material is anisotropic, for which we allow the stress-strain matrix, or the compliance matrix,
to have arbitrary values. The stress-strain matrix is symmetric, therefore an anisotropic material requires 21 parameters to define.
To define an anisotropic material with n88modelgenerator, it is necessary to use a material definitions file. See below.

Faim Finite Element Analysis Manual 19 / 206

2.5.2 Plasticity

Elastoplastic material behaviour is an idealisation of a particular kind of nonlinear stress-strain relationship in which we divide
the stress-strain relationship into two clearly distinguished regions: (1) an elastic region, which is identical to the linear elastic
material behaviour described above, and, (2) a purely plastic region. For a material subject to a uniaxial deformation, this is
sketched in Figure 10. In Figure 10A, we see the initial elastic region, which in this sketch is tensile, with slope equal to the
Young’s modulus. This region continues until the stress reaches the yield strength, Y. For further increases in strain beyond this
point, the stress ceases to increase, and remains constant at the yield strength. The incremental strain in this region is referred to
as the plastic strain. Although we must perform work to produce a plastic strain, the plastic strain is irreversible, as can be seen in
Figure 10B. In B, after applying a large plastic strain, the strain is gradually reduced. The plastic strain component is unchanged
during the relaxation; instead, it is the elastic component of the strain that is reduced. As the stress depends entirely on the elastic
component of the strain, the stress also immediately begins to decrease. Hence, we do not travel back along the “outward” path,
but instead return along a shifted version of the linear elastic region: the material exhibits hysteresis. Although the initial point
and the final point of Figure 10B are both characterised by zero strain, the state is quite different, as the latter state has a large
plastic strain. If we continue to reduce the strain, as in Figure 10C, the stress becomes negative - a compressive stress - until,
once again, we reach the yield strength limit. Note that the yield strength in tension and the yield strength in compression are not
necessarily equal.

A.

Y

B.

Y

C.

YT

YC

Figure 2.7: Elastoplastic behaviour in one dimension.

Faim Finite Element Analysis Manual 20 / 206

In three dimensions, an elastoplastic material is characterised by a yield surface, which is the boundary of the elastic region. The
yield surface is defined in stress space (or equivalently in strain space). For isotropic materials, the yield surface is most easily
defined in the space of the three principal stresses. Stresses lying inside the yield surface are associated with an elastic state.
When the stress reaches the yield surface, the material yields, and further increases in strain result in the stress state moving
along the yield surface. Many different shapes of yield surface are possible, and are characteristic of different kinds of materials.
Yield surfaces are conveniently defined mathematically by a yield function f, such that the yield surface is the locus of points for
which f = 0. A complete explanation of elastoplastic behaviour in three dimensions is not given here. We recommend that you
consult a good mechanics of materials textbook.

To specify an elastoplastic material, it is necessary both to specify its elastic properties, and its plasticity. Currently Faim
only allows plasticity to be defined with isotropic elastic properties. A typical specification of an elastoplastic model using
n88modelgenerator will look something like this

n88modelgenerator --youngs_modulus=6829 --poissons_ratio=0.3 --plasticity=vonmises,50 ←↩
mydata.aim

The currently supported plastic yield criteria are described below.

von Mises yield criterion

The von Mises yield criterion states that yielding begins when the distortional strain-energy density attains a certain limit. It is
therefore also called the distortional energy density criterion. The distortional strain-energy density is the difference between
the total strain energy density and the strain energy density arising only from the part of the strain resulting in a volume change.
Hence, the distortional strain-energy density is associated with that part of the strain that results in no volume change: or, in other
words, the part of the strain that causes a change in shape.

The yield function for a von Mises material, in terms of the three components of the principal stress, is given by

f =
1
6
[
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2]− 1
3

Y 2

The parameter Y is the yield strength in uniaxial tension (or compression).

To specify a von Mises material in n88modelgenerator, use the parameter plasticity. For example, --plasticity=vonmises,68
will define a von Mises material with Y = 68. The units of Y are the same as stress, so typically MPa.

Mohr-Coulomb yield criterion

The Mohr-Coulomb yield criterion is a refinement of the Tresca yield condition, which states that yielding begins when the shear
stress at a point exceeds some limit. To this, the Mohr-Coulomb criterion adds a dependence on the hydrostatic stress, such that
the shear stress limit is dependent on the hydrostatic stress, in particular that the shear stress limit increases with hydrostatic
stress. The Mohr-Coulomb yield criterion is characterised by two values: the cohesion c and the angle of internal friction ϕ . For
principal stresses in the order σ1 > σ2 > σ3, the Mohr-Coulomb yield function is

f = σ1−σ3 +(σ1 +σ3)sinφ −2c cosφ

Under uniaxial tension, the yield strength is

YT =
2c cos

1+ sinφ

while under uniaxial compression, the yield strength is

YC =
2c cos

1− sinφ

Mohr-Coulomb materials are specified to n88modelgenerator using these two yield strengths. See plasticity. For example,
--plasticity=mohrcoulomb,40,80 will define a Mohr-Coulomb material with YT = 40 and YC = 80. The units of YT
and YC are the same as stress, so typically MPa.

2.5.3 Material table generation

The parameter material_table allows one of two standard types of material table may be chosen: a simple table, consisting of a
single material definition, or a Homminga material table, which relates density to stiffness.

Faim Finite Element Analysis Manual 21 / 206

If you require a material table different than either of the standard ones offered, you can use a material definitions file. See below
for details.

Homogeneous material table

The simplest material table consists of a single material definition. Thus it corresponds to homogeneous material properties: all
elements are assigned the same material properties.

Note that although only a single material definition is created, it is nevertheless still possible for the material table to have
multiple entries corresponding to multiple material IDs. In this case every material ID in the table maps of course to the same
single material definition. n88modelgenerator automates this: it examines the segmented input image, and generates one
entry in the material table for every unique material ID (i.e. image value) present in the segmented image. Clearly, as a matter
of efficiency and simplicity, if you intend to use an image for analysis with homogenous material properties, it is preferable to
segment the image object to a single material ID. It is not however, necessary to do so.

Homminga material table

Homminga (2011) introduced a model that attempts to account for varying bone strength with density. In this model, the modulii
vary according to the equation

E = Emax(ρ/ρmax)
1.7

Where ρ is the CT image density. For the orthotropic case, the shear modulii follow the same scaling, and for the anisotropic
case, the stress-strain matrix follows this scaling.

To use this type of material table, the data must be segmented such that the material ID of each voxel is proportional to its CT
image density. As material IDs are discrete, the CT image density is therefore binned. Hence

E = Emax(ID/IDmax)
1.7

IDmax is set with the parameter homminga_maximum_material_id, and the exponent is set with the parameter homminga_-
modulus_exponent.

Emax will depend on the specified material. For an isotropic material, it will be given by youngs_modulus. However orthotropic
or anisotropic materials may also be scaled: the entire stress-strain matrix scales according to the above-stated law.

Warning
In contrast to the homogenous material table, a Homminga material table is not guaranteed a priori to have an entry
for every material ID present in the input segmented image. If your segmented image has material IDs larger than the
specified IDmax , n88modelgenerator will produce an error.

2.5.4 Material definitions file

The method presented up to this point for defining materials in n88modelgenerator, while relatively easy, suffers from some
limitations. In particular, only a single material can be specified using the options discussed so far. Furthermore, an anisotropic
material can not be specified at all using the command line parameters. n88modelgenerator therefore provides an alternate
method of defining materials, which is via a material definitions file. A material definitions file can be used to define any material
known to Faim, any number of materials, and any material table. A material definitions file can be specified with the argument
material_definitions.

The material definitions file format is straight-forward, as you can see from this example.

MaterialDefinitions:
CorticalBone:

Type: LinearIsotropic
E: 6829
nu: 0.3

TrabecularBone:
Type: LinearIsotropic
E: 7000
nu: 0.29

MaterialTable:
100: TrabecularBone
127: CorticalBone

Faim Finite Element Analysis Manual 22 / 206

Here we have a material definitions file containing two materials, both of which are linear elastic materials, but with different
numerical values. Besides defining the materials, we have to specify the material table, which maps materials IDs (ie. the values
present in the input image) to the materials we have defined.

Note
The indenting in material definitions file is important, as it indicates how objects are grouped. Indenting must be done with
spaces, and not with tabs. Technically, the material definitions file is in YAML format. Thus any valid YAML syntax can be used.
In particular, it is possible to use curly brackets instead of indenting to indicate nesting, should you so wish.

Here is another example material definitions file, which defines an anisotropic material.

MaterialDefinitions:
ExampleAnisoMat:

Type: LinearAnisotropic
StressStrainMatrix: [

1571.653, 540.033, 513.822, 7.53 , -121.22 , -57.959,
540.033, 2029.046, 469.974, 78.591, -53.69 , -50.673,
513.822, 469.974, 1803.998, 20.377, -57.014, -15.761,
7.53 , 78.591, 20.377, 734.405, -23.127, -36.557,

-121.22 , -53.69 , -57.014, -23.127, 627.396, 13.969,
-57.959, -50.673, -15.761, -36.557, 13.969, 745.749]

MaterialTable:
1: ExampleAnisoMat

The possible materials, and the values that must be specified for each, are listed in the following table.

Table 2.1: Materials as specified in a material definitions file

Type Variable Description
LinearIsotropic E: value Young’s modulus

nu: value Poisson’s ratio
LinearOrthotropic E: [value,value,value] Young’s modulii as [Exx,Eyy,Ezz]

nu: [value,value,value] Poisson’s ratios as [νyz,νzx,νxy]
G: [value,value,value] Shear modulii as [Gyz,Gzx,Gxy]

LinearAnisotropic StressStrainMatrix:
[value1,value2,. . . ,value36]

The 36 elements of the stress-strain matrix. Since
the stress-strain matrix is symmetric, there are only
21 unique values, but all 36 must be given. They
must be specified in the order K11 , K12 , K13, . . .
K66 , but since the matrix is symmetric, this is
equivalent to K11 , K21 , K31, . . . K66.

VonMisesIsotropic E: value Young’s modulus
nu: value Poisson’s ratio
Y: value Yield strength

MohrCoulombIsotropic E: value Young’s modulus
nu: value Poisson’s ratio
c: value Mohr Coulomb c parameter (cohesion).
phi: value Mohr Coulomb ϕ parameter (friction angle).

Note
Materials are stored in the n88model file using exactly the same structure and variable names. See the MaterialDefinitions
group of the n88model file specification.

http://www.yaml.org/

Faim Finite Element Analysis Manual 23 / 206

Chapter 3

Preparing Finite Element Models with vtkbone

You only need to read this chapter if you are interested in writing scripts to create your own custom model types. For many users,
n88modelgenerator, as described in the previous chapter, will be sufficient.

Although n88modelgenerator can generate many useful models for FE analysis, at times additional flexibility is required. In
order to provide as much flexibility to the user as possible, we provide the option for users to perform custom model generation.
This functionality is provided by vtkbone toolkit, which is built on VTK . VTK is "an open-source, freely available software
system for 3D computer graphics, image processing and visualization", produced by Kitware. VTK provides a great deal of
functionality to manipulate and visualize data that is useful for finite element model generation and analysis. vtkbone is a
collection of custom VTK classes that extend VTK to add finite element pre-processing functionality. The vtkbone library
objects combined with generic VTK objects can be quickly assembled into pipelines to produce nearly infinite customizability
for finite element model generation and post-processing analysis.

Basing vtkbone on VTK provides the following advantages.

Large existing library of objects and filters
VTK is a large and well established system, with many useful algorithms already packaged as VTK objects.

Built-in visualization
VTK was designed for rendering medical data. With it sophisticated visualizations are readily obtained. The visualization
application ParaView is built with VTK and provides excellent complex data visualization. vtkbone functionality is
easily incorporated into ParaView.

Standardization
The time and effort the user invests in learning vtkbone provides familiarity with the widely-used VTK system, and is
not limited in application to Numerics88 software.

Extensibility
The advanced user is able to write their own VTK classes where required.

Multiple Language Support
VTK itself consists of C++ classes, but provides wrapping functionality to generate an interface layer to other languages.
vtkbone uses this wrapping functionality to provide a Python interface.

The best way to learn to use vtkbone is to follow the tutorials in Chapter 7.

We recommend that you use Python for assembling programs with vtkbone. There are several advantages of using Python,
including simplicity of syntax and automatic memory management. In our experience, writing programs using vtkbone in
Python is far less time consuming, and results in programs that are much easier to debug than writing the same programs in C++
. This is particularly true for users without significant programming experience.

http://vtk.org
http://www.kitware.com

Faim Finite Element Analysis Manual 24 / 206

Tip
Many of the tools provided with Faim are implemented as Python scripts. Some use vtkbone, and some manipulate the
n88model file directly through the python netCDF4 module, which is installed automatically when you install n88tools.
Examining how these scripts work can be a good way to learn how to write your own custom python scripts for manipulating
Faim models.

3.1 vtkbone API documentation

The complete Application Programming Interface (API) reference documentation for vtkbone is available at http://numerics88.com/-
documentation/vtkbone/1.0/ . Class names in this document are linked to the vtkbone API documentation, so that if you click
on a class name, it should open the documentation for that class. You should refer to the vtkbone API reference documentation
whenever using a vtkbone class, as the descriptions below are introductory, and do not exhaustively cover all the functionality.

API documentation for VTK can be found at http://www.vtk.org/doc/release/6.3/html/ . Or you can get the latest version at
https://vtk.org.download/ .

Note
If you are using Python instead of C (and for most purposes, we recommend that you do), then you
will have to infer the Python interface from the C interface. This is generally simple: class and
method names are the same, as are all positional argument names. Since Python is a weakly-typed language, you do not
need to be concerned generally with the declared type of the arguments. A small number of C++ methods in vtkbone do not
have a Python equivalent, but this is rare.

3.2 Array indexing in vtkbone

Arrays in vtkbone, as in VTK, C and Python, are zero-indexed. That is, the first element is element 0. This applies also
to node numbers and element numbers. (It does not however apply to material IDs, because the material ID is not an array
index; it is a key into a table look-up.) Be careful if reading an n88model file directly, because node numbers and element
numbers are stored 1-indexed (see the file specification). The translation is done automatically if you use the vtkbone objects
vtkboneN88ModelReader and vtkboneN88ModelWriter .

3.3 Typical workflow for vtkbone

Figure 11 shows a typical work flow for creating a finite element model using vtkbone. VTK generally consists of two types
of objects (or “classes”): objects that contain data, and objects that process data. The latter are called “filters”. Filters can be
chained together to create a processing pipeline. In the figure, filters are listed in the boxes with dark black lines and rounded
corners; data objects are listed in gray rectangles. The boxes with dark black lines and rounded corners represent actions, and
may list one or more VTK or vtkbone objects that are suitable for performing the action.

http://unidata.github.io/netcdf4-python/
http://numerics88.com/documentation/vtkbone/1.0/
http://numerics88.com/documentation/vtkbone/1.0/
http://www.vtk.org/doc/release/6.3/html/
https://vtk.org.download/
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelReader.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelWriter.html

Faim Finite Element Analysis Manual 25 / 206

Read Segmented Image

vtkboneAIMReader
vtkXMLImageDataReader

vtkImageData

Generate a Mesh

vtkboneImageToMesh

vtkUnstructuredGridData

Define Materials

vtkboneLinearIsotropicMaterial
vtkboneLinearOrthotropicMaterial
etc...

Construct Material Table

vtkboneGenerateHomogeneousMaterialTable
vtkboneGenerateHommingaMaterialTable

vtkboneMaterialTable

Create Complete FE Model

vtkboneApplyCompressionTest
vtkboneApplyBendingTest
vtkboneApplyShearTest
vtkboneApplyTorsionTest

vtkboneFiniteElementModel

Modify Model

Create FE Model Starting Point

vtkboneFiniteElementModelGenerator
vtkboneApplyTestBase

vtkboneFiniteElementModel

Add Boundary Conditions

vtkboneFiniteElementModel

Add Applied Loads

vtkboneFiniteElementModel

Set Post-processing Parameters

vtkboneFiniteElementModel

Write Solver Input File

vtkboneN88ModelWriter
vtkboneAbaqusInputWriter

Figure 3.1: Typical work flow for vtkbone.

Faim Finite Element Analysis Manual 26 / 206

The typical way to use a VTK filter object is to create it, set parameters, set the input (if relevant), call Update(), and then get
the output. For example, for a vtkboneAIMReader object, which has an output but no input, we might do this in Python

reader = vtkbone.vtkboneAIMReader()
reader.SetFileName ("MYFILE.AIM")
reader.Update()
image = reader.GetOutput()

Tip
There is an alternate way to use VTK filter objects, and that is to chain them together in a pipeline. In this case, calling
Update on the last item in the pipeline will cause an update of all the items in the pipeline, if required. To connect filters in a
processing pipeline, use SetInputConnection and GetOutputPort instead of SetInputData and GetOutput.
As an example, we can connect a vtkboneAIMReader to a vtkboneImageToMesh like this

reader = vtkbone.vtkboneAIMReader()
reader.SetFileName ("MYFILE.AIM")
mesher = vtkbone.vtkboneImageToMesh()
mesher.SetInputConnection (reader.GetOutputPort())
mesher.Update() v1
This automatically calls Update on the reader. Generally, unless you have some application where the pipeline approach is
advantageous, we recommend the simpler method of using SetInputData and GetOutput and explicitly passing the data
object between filters.

3.4 The vtkboneFiniteElementModel object

The central class that vtkbone adds to VTK is a new type of data class, called vtkboneFiniteElementModel . The conceptual
structure of vtkboneFiniteElementModel is shown in Figure 12. vtkboneFiniteElementModel is a subclass of the VTK class
vtkUnstructuredGrid , which represents a data set as consisting of an assortment of geometric shapes. In VTK terminology, these
individual shapes are “Cells”. They map naturally to the concept of Elements in finite element analysis. The vertices of the cells,
in VTK terminology, are “Points”. These are equivalent to Nodes in finite element analysis. vtkUnstructuredGrid , like other
VTK objects, is capable of storing specific types of additional information, such as one or more scalar or vector values associated
with each Cell or Point. This aspect is used for storing, for example, material IDs, which are mapped to the scalar values of the
Cells. To vtkUnstructuredGrid , vtkboneFiniteElementModel adds some additional information related to requirements for finite
element analysis such as material properties and constraints (i.e. displacement boundary conditions and applied loads), as well
as sets of Points and/or Cells, which are useful for defining constraints and in post-processing. Sets and constraints are indexed
by an assigned name, which is convenient for accessing and modifying them.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAIMReader.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAIMReader.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 27 / 206

vtkboneFiniteElementModel

Geometry (vtkUnstructuredGrid*)

Points/Nodes (vtkPoints)

Cells/Elements (vtkCellArray)

Material IDs of Elements
(vtkDataArray as scalars of cells)

Post-processing parameters
(vtkInformation)

Material Table (vtkboneMaterialTable)

vtkboneMaterial
vtkboneMaterial
etc...

Node/Element sets

Constraints
(vtkboneConstraintCollection)

vtkboneConstraint
vtkboneConstraint
etc...

Figure 3.2: Structure of vtkboneFiniteElementModel.

3.5 Reading a segmented image

We typically read in data as a segmented 3D volumetric image from micro-CT. The image values (i.e. the pixel or voxel values)
need to correspond to the segmented material IDs. The selection of a file reading object will be appropriate to the input file
format. The output of the file reader filter will be a vtkImageData object.

We have already given the example of using a vtkboneAIMReader to read a Scanco AIM file, which was

reader = vtkbone.vtkboneAIMReader()
reader.SetFileName ("MYFILE.AIM")
reader.Update()
image = reader.GetOutput()

http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAIMReader.html

Faim Finite Element Analysis Manual 28 / 206

Important
One slightly obscure technical issue which may arise is: are the data of a vtkImageData associated with the Points or
the Cells? Either is possible in VTK. The scalar image data (scalar because there is one value per location) must be
explicitly associated either with the Cells or with the Points. (In fact it’s possible to have different scalar data on the Cells
and the Points.) Thinking about it as an FE problem, it is natural to associate the image data with Cells, where each
image voxel becomes an FE element. Thus, we like to think of each value in the image as being at the center of a Cell
in the VTK scheme. VTK however has generally standardized on the convention of image data being on the Points.
There are some important consequences. For example, a vtkImageData that has dimensions of (M,N,P) has (M,N,P)
Points, but only (M-1,N-1,P-1) Cells. Or conversely, if you have data with dimensions of (R,S,T), and you want to put
the data on the Cells, then you actually require a vtkImageData with dimensions of (R+1,S+1,T+1). Also, if the origin is
important, one needs to keep in mind that the origin is the location of the zero-indexed Point. In terms of the Cells, this
is the “lower-left” corner of the zero-indexed Cell, not the center of that Cell. vtkbone objects that require images as
input will accept input with data either on the points or on the Cells. However, many VTK objects that process images
work correctly only with input data on the Points. By contrast, if you want to render the data and color according to
the scalar image, the rendering is quite different depending on whether the scalar data is on the Points or the Cells.
Generally, you get the expected result in this case by putting the data on the Cells. This discussion is important because
it illustrates that there is no one universally correct answer to whether image data belongs on the Points or on the Cells.
vtkbone image readers, such as vtkboneAIMReader have an option DataOnCells to control the desired behaviour.
VTK image readers always put image data on the Points, so if you need the data on the Cells, you must to copy the
output to a new vtkImageData .

Examples of reading data with vtkbone are given in the tutorials Compressing a cube revisited using vtkbone and Advanced
custom model tutorial: a screw pull-out test.

3.6 Reading an unsegmented image and segmenting it

If you have an unsegmented image such as a raw micro-CT image that has scalar values still in terms of density, it is possible
to process the image with VTK. Segmentation is a complex subject, which we are unable to cover here. For an example of
a simple segmentation, where only a density threshold and connectivity are considered, consult the example in the directory
examples/segment_dicom.

3.7 Ensuring connectivity

A well-defined problem for finite element analysis requires that all parts of the object in the image be connected as a single
object.

Disconnected parts in the input create an ill-defined problem, with an infinite number of solutions. These arise, for example,
when there is noise in the image data. Some solvers cannot solve this kind of problem at all (the global stiffness matrix is
singular). n88solver will typically find a solution. However, the convergence might be very slow as it attempts to find the
non-existent optimum position for the disconnected part.

To avoid this problem, the input image can be processed with the filter ImageConnectivityFilter . This filter has many options
and different modes of operation, but in most cases the default mode is sufficient. In the default behaviour:

1. Zero-valued voxels are considered “empty space”, and no connection is possible though them.

2. Voxels are considered connected if they share a face. Sharing only a corner or an edge is not sufficient.

3. Only the largest connected object in the input image is passed to the output image. Smaller objects that have no continuous
path of connection to the largest connected object are zeroed-out.

Because of the first point, it is clearly necessary to segment the image before applying ImageConnectivityFilter , because empty
space must be labelled with the value 0.

http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAIMReader.html
http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://numerics88.com/documentation/vtkbone/1.0/classImageConnectivityFilter.html
http://numerics88.com/documentation/vtkbone/1.0/classImageConnectivityFilter.html

Faim Finite Element Analysis Manual 29 / 206

connectivity_filter = vtkbone.vtkboneImageConnectivityFilter()
connectivity_filter.SetInput (image)
connectivity_filter.Update()
image = connectivity_filter.GetOutput() v1
v1 , v1 Notice that we use the variable name image for both the input and the output. This causes no problems in Python,

although by doing this we can no longer use this to refer to the input image as the second call to image reassigns the
variable the value of connectivity_filter.GetOutput(). If it were necessary to refer to the input image, then
we should use different names for the input and output.

If your input image is processed and segmented with another software package, it is still a good idea to verify the connectivity
of the input image. If your input image is carefully prepared, and you don’t want to inadvertently modify it, you can check for
connectivity without modifying it like this:

connectivity_mapper = vtkbone.vtkboneImageConnectivityMap()
connectivity_mapper.SetInput (image)
connectivity_mapper.Update()
if connectivity_mapper.GetNumberOfRegions() != 1:

print "WARNING: Input image does not consist of a single connected object."

Examples of ensuring connectivity are given in the tutorials Compressing a cube revisited using vtkbone and Advanced custom
model tutorial: a screw pull-out test.

3.8 Generating a mesh

Once we have a segmented and connected image, we convert the image to a mesh of elements, represented by a vtkUnstruc-
turedGrid object. The base class vtkUnstructuredGrid supports many types of Cells, but currently vtkbone supports only
VTK_HEXAHEDRON and VTK_VOXEL. The topology of VTK_VOXEL is shown in Figure 13.

0
1

3
2

4
5

7
6

z

y
x

Figure 3.3: Topology of VTK_VOXEL. Local numbering of the nodes (Points) of the element (Cell) is shown (0-indexed).

Generating a mesh in vtkbone is straightforward; simply pass the input image to a vtkboneImageToMesh filter. It takes no
options; the important choices were made already during the segmentation stage. In Python this looks like this

mesher = vtkbone.vtkboneImageToMesh()
mesher.SetInput (image)
mesher.Update()
mesh = mesher.GetOutput()

http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html

Faim Finite Element Analysis Manual 30 / 206

vtkboneImageToMesh creates one Cell (i.e. element) of type VTK_VOXEL for every voxel in the input image that has non-zero
scalar value. The scalar values of the image become the scalar values of the output Cells. It also creates Points at the vertices
(corners) of the Cells. There are no duplicate Points: neighbouring Cells will reference the same Point on shared vertices.

Important
Cells and Points in VTK are ordered; they can be indexed by consecutive Cell or Point number. This ordering is not
inconsequential. In Faim, the solver efficiency is optimal with certain orderings, and in fact there are orderings for which
the solver fails with an error message. The ordering output by vtkboneImageToMesh is “x fastest, z slowest”. It is
recommended to always preserve this ordering.

3.9 Defining materials

Material definitions are generated by creating a instance of a class of the corresponding material type, and then calling the
appropriate methods to set the material parameters. Every material must have a unique name. vtkbone will assign default
unique names when defining a new material object, but the names will be more meaningful if you assign them yourself.

vtkbone version 9 supports the following material classes:

• vtkboneLinearIsotropicMaterial

• vtkn88LinearOrthotropicMaterial

• vtkn88LinearAnisotropicMaterial

• vtkboneVonMisesIsotropicMaterial

• vtkboneMohrCoulombIsotropicMaterial

Plus special material classes that are in fact material arrays, which are discussed below.

Here is an example of creating a simple linear isotropic material:

linear_material = vtkbone.vtkboneLinearIsotropicMaterial()
linear_material.SetYoungsModulus (800) v1
linear_material.SetPoissonsRatio (0.33)
linear_material.SetName ("Linear 800")

v1 As discussed in A note about units, the units of Young’s modulus depend on the input length units. If the length units are
mm and force units in N, then Young’s modulus has units of MPa.

This is the construction of a Mohr-Coulomb elastoplastic material:

ep_material = vtkbone.vtkboneMohrCoulombIsotropicMaterial()
ep_material.SetYoungsModulus (800)
ep_material.SetPoissonsRatio (0.33)
ep_material.SetYieldStrengths (20, 40) v1
ep_material.SetName ("Mohr Coulomb material 1")

v1 For Mohr-Coulomb, this pair of numbers is the yield strength in tension and the yield strength in compression. The units
of yield strength are the same as stress, so typically MPa.

In addition to the standard material classes, there are material array classes. Simply put, these define not a single material,
but a sequence of similar materials with variable parameters. For a discussion of the circumstances in which this could be
useful, see Efficient Handling of Large Numbers of Material Definitions. The material array classes do inherit themselves from
vtkboneMaterial (rather than being a collection of vtkboneMaterial objects). They can therefore be used nearly anywhere that a
regular material can be; in particular, they can be inserted as entries into a material table. The material array classes are

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneLinearIsotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkn88LinearOrthotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkn88LinearAnisotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneVonMisesIsotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMohrCoulombIsotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterial.html

Faim Finite Element Analysis Manual 31 / 206

• vtkboneLinearIsotropicMaterialArray

• vtkn88LinearOrthotropicMaterialArray

• vtkn88LinearAnisotropicMaterialArray

• vtkboneVonMisesIsotropicMaterialArray

• vtkboneMohrCoulombIsotropicMaterialArray

3.10 Constructing a material table

Once you have created your material definitions, you need to combine them into a material table, which maps material IDs to the
material definitions.

For example, if we want a homogenous material, and the input image has only the scalar value 127 for bone (and 0 for back-
ground), then we can make a material table like this:

materialTable = vtkbone.vtkboneMaterialTable()
materialTable.AddMaterial (127, linear_material) v1
v1 We created the material linear_material above.

We must assign a material for every segmentation value present in the input. The same material can be assigned to multiple ma-
terial IDs. For example, suppose the input image has segmentation values 100-103, and we have created two different materials,
materialA and materialB, then we could create a vtkboneMaterialTable like this:

materialTable = vtkbone.vtkboneMaterialTable()
materialTable.AddMaterial (100, materialA)
materialTable.AddMaterial (101, materialB)
materialTable.AddMaterial (102, materialB)
materialTable.AddMaterial (103, materialB)

There are a couple of helper classes that simplify the creation of material tables for common cases. For a model with a homoge-
nous material, we can use vtkboneGenerateHomogeneousMaterialTable . This class assigns a specified vtkboneMaterial to all
the scalar values present in the input mesh. The size of the resulting material table depends on the number of distinct input values.
For example,

mtGenerator = vtkbone.vtkboneGenerateHomogeneousMaterialTable()
mtGenerator.SetMaterial (material1)
mtGenerator.SetMaterialIdList (mesh.GetCellData().GetScalars())
mtGenerator.Update()
materialTable = mtGenerator.GetOutput()

We could alternatively set SetMaterialIdList with the scalars from the image, rather than those of the mesh; the results will be the
same.

Another useful helper class is vtkboneGenerateHommingaMaterialTable . Refer to the the section on the Homminga material
model in the chapter on preparing models with n88modelgenerator.

Examples of defining materials and creating a material table are given in the tutorials Compressing a cube revisited using vtkbone,
Deflection of a cantilevered beam: adding custom boundary conditions and loads and Advanced custom model tutorial: a screw
pull-out test.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneLinearIsotropicMaterialArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkn88LinearOrthotropicMaterialArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkn88LinearAnisotropicMaterialArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneVonMisesIsotropicMaterialArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMohrCoulombIsotropicMaterialArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterialTable.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneGenerateHomogeneousMaterialTable.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneGenerateHommingaMaterialTable.html

Faim Finite Element Analysis Manual 32 / 206

3.11 Creating a finite element model

At this stage, we combine the geometric mesh with the material table to create a vtkboneFiniteElementModel object. The most
elementary way to do this is with a vtkboneFiniteElementModelGenerator , which can be used like this

modelGenerator = vtkbone.vtkboneFiniteElementModelGenerator()
modelGenerator.SetInput (0, mesh)
modelGenerator.SetInput (1, materialTable)
modelGenerator.Update()
model = modelGenerator.GetOutput()

After combining the mesh with the material table, all that is now required to make a complete finite element model is to add
boundary conditions and/or applied loads, and to specify node and element sets for the post-processing. For standard tests, there
are vtkbone filters to generate complete models, and these are described below in Section 3.18.

3.12 Creating node and element sets

Before we can create boundary conditions or applied loads, we need to define node and/or element sets that specify all the nodes
(or elements) to which we want to apply the boundary condition (displacement or applied load). Node and element sets are also
used during post-processing. This will be discussed later in Setting post processing parameters.

Any number of node and element sets may be defined. They must be named, and they are accessed by name. The node and
element sets are simply lists of node or element numbers, and are stored as vtkIdTypeArray . There are many ways to create node
and element sets. A very simple way is to simply enumerate the node numbers (or element numbers). For example, if we wanted
to create a node set of the nodes 8,9,10,11 , this would be the code:

nodes = array ([8,9,10,11])
nodes_vtk = numpy_to_vtk (nodes, deep=1, array_type=vtk.VTK_ID_TYPE) v1
nodes_vtk.SetName ("example_node_set")
model.AddNodeSet (nodes_vtk)

v1 In Python, the most flexible way to handle array data is with numpy arrays, however the data must be passed to VTK
objects as vtkDataArray . numpy_to_vtk does the conversion.

VTK offers many ways to select Points and Cells, for example by geometric criteria. As an example of this, refer to the screw_-
pullout_tutorial where a node set is selected from nodes located on a particular rough surface, and subject to additional criterion
r1 < r < r2 , where r is the radius from a screw axis.

vtkbone also offers some utility functions for identifying node and elements sets. These can be found in vtkboneSelectionU-
tilities .

Frequently, we require sets corresponding to the faces of the model (i.e. the boundaries of the image). In this case, we may use
the class vtkboneApplyTestBase . vtkboneApplyTestBase is a subclass of vtkboneFiniteElementModelGenerator , with the extra
functionality of creating pre-defined sets. vtkboneApplyTestBase implements the concept of a Test Frame and a Data Frame.
Refer to test orientation in the chapter on n88modelgenerator. vtkboneApplyTestBase creates the node and element sets given in
the following table. Note that in each case there is both a node and element set, with the same name.

Table 3.1: Node and element sets generated by vtkboneApplyTestBase

Set name Consists of
face_z0 nodes/elements on the bottom surface (z=zmin) in the Test Frame.
face_z1 nodes/elements on the top surface (z=zmax) in the Test Frame.
face_x0 nodes/elements on the x=xmin surface in Test Frame.
face_x1 nodes/elements on the x=xmax surface in Test Frame.
face_y0 nodes/elements on the y=ymin surface in Test Frame.
face_y1 nodes/elements on the y=ymax surface in Test Frame.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://www.vtk.org/doc/release/6.3/html/classvtkIdTypeArray.html
http://www.vtk.org/doc/release/6.3/html/classvtkDataArray.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneSelectionUtilities.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneSelectionUtilities.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html

Faim Finite Element Analysis Manual 33 / 206

The sets “face_z0” and “face_z1” are of particular importance, as the standard tests are applied along the z axis in the Test Frame.

vtkboneApplyTestBase has options UnevenTopSurface() and UnevenBottomSurface() by which we can choose to
have “face_z0” and/or “face_z1” as the set of nodes/elements on an uneven surface, instead of the boundary of the model. This is
especially useful when the object in the image does not intersect the top/bottom boundaries of the image. See further discussion
on uneven surfaces in the chapter on n88modelgenerator. The two sets “face_z0” and “face_z1” can also be limited to a specific
material, as defined by material ID.

vtkboneApplyTestBase is used identically to vtkboneFiniteElementModelGenerator , except that additional optional settings may
be set if desired. For example, here we define a model with a test axis in the y direction, and specify that we want the set “face_-
z1” to be the uneven surface in the image, where we are limiting the search for the uneven surface to a maximum distance of 0.5
from the image boundary.

modelGenerator = vtkbone.vtkboneApplyTestBase()
modelGenerator.SetInput (0, mesh)
modelGenerator.SetInput (1, materialTable)
modelGenerator.SetTestAxis (vtkbone.vtkboneApplyTestBase.TEST_AXIS_Y)
modelGenerator.UnevenTopSurfaceOn()
modelGenerator.UseTopSurfaceMaximumDepthOn()
modelGenerator.SetTopSurfaceMaximumDepth (0.5)
modelGenerator.Update()
model = modelGenerator.GetOutput()

An example of using the standard node and element sets from vtkboneApplyTestBase is given in Deflection of a cantilevered
beam: adding custom boundary conditions and loads. The tutorial Advanced custom model tutorial: a screw pull-out test
demonstrates a sophisticated selection of custom node sets.

3.13 Adding boundary conditions

Once we have created the node sets, creating a boundary condition applied to the nodes of a particular node set is straightforward
and can be done with the method ApplyBoundaryCondition() of vtkboneFiniteElementModel . For example, to fix the
bottom nodes and apply a displacement of 0.1 to the top nodes, we could do this

model.ApplyBoundaryCondition (
"face_z0",
vtkbone.vtkboneConstraint.SENSE_Z, v1
0,
"bottom_fixed") v2

model.ApplyBoundaryCondition (
"face_z1",
vtkbone.vtkboneConstraint.SENSE_Z,
-0.1, v3
"bottom_fixed")

v1 vtkbone.vtkboneConstraint.SENSE_Z has the value 2 (see vtkboneConstraint). It is possible just to use that
value 2 here, but SENSE_Z is more informative.v2 This is the user-defined name assigned to the boundary condition. Every constraint must have a unique name.v3 Negative if we want compression.

The “sense” is the axis direction along which the displacement is applied. The other axis directions remain free unless you also
specify a value for them. It is quite possible, and common, to call ApplyBoundaryCondition() three times on the same
node set, once for each sense.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraint.html

Faim Finite Element Analysis Manual 34 / 206

ApplyBoundaryCondition() can take different types of arguments, for example arrays of senses, displacements and node
numbers. Refer to the API documentation for vtkboneFiniteElementModel . There is also a convenience method FixNodes(),
which is a quick way to set all senses to a zero displacement.

Boundary conditions are implemented within vtkboneFiniteElementModel as a specific type of vtkboneConstraint . All the
constraints associated with a vtkboneFiniteElementModel are contained in a vtkboneConstraintCollection . It is possible to
modify either vtkboneConstraintCollection or a particular vtkboneConstraint manually. For example, we could create a boundary
condition on two nodes in the following manner. This is somewhat laborious and usually unnecessary, but it can be adapted to
create unusual boundary conditions.

node_ids = array([3,5])
node_ids_vtk = numpy_to_vtk (node_ids, deep=1, array_type=vtk.VTK_ID_TYPE)
senses = array ([0,2]) # x-axis, z-axis
senses_vtk = numpy_to_vtk (senses, deep=1, array_type=vtk.VTK_ID_TYPE)
senses_vtk.SetName ("SENSE")
values = array([0.1,0.1])
values_vtk = numpy_to_vtk (values, deep=1, array_type=vtk.VTK_ID_TYPE)
values_vtk.SetName ("VALUE")
constraint = vtkbone.vtkboneConstraint()
constraint.SetName ("a_custom_boundary_condition")
constraint.SetIndices (node_ids)
constraint.SetConstraintType (vtkbone.vtkboneConstraint::DISPLACEMENT)
constraint.SetConstraintAppliedTo (vtkbone.vtkboneConstraint::NODES)
constraint.GetAttributes().AddArray (senses)
constraint.GetAttributes().AddArray (values)
model.GetConstraints().AddItem (constraint)

Examples of applying boundary conditions are given in the tutorials Deflection of a cantilevered beam: adding custom boundary
conditions and loads and Advanced custom model tutorial: a screw pull-out test.

3.14 Adding applied loads

Creating an applied load is similar to creating a displacement boundary condition. They are both implemented as vtkboneCon-
straint . However, while displacement boundary conditions are applied to nodes, applied loads are applied to elements; in fact
they are applied to a particular face of an element (or to the body of an element). Therefore, the ApplyLoad() method of
vtkboneFiniteElementModel takes the name of an element set, and has an additional input argument which specifies to which
faces of the elements the load is applied. Here is an example of creating an applied load on the top surface of the model:

model.ApplyLoad (
"face_z1", v1
vtkbone.vtkboneConstraint.FACE_Z1_DISTRIBUTION,
vtkbone.vtkboneConstraint.SENSE_Z, v2
6900, v3
"bottom_fixed")

v1 Refers to the element set “face_z1”, not the corresponding node set, which very often also exists with the same name.v2 In this example, the applied force is perpendicular to the specified element face, but it is not required to be so.v3 This is the total load applied. The load is evenly distributed between all of the element faces.

To apply forces along non-axis directions, call ApplyLoad() multiple times with different senses.

As with displacement boundary conditions, we can create an applied force manually, if we require more flexibility. It will look
something like this:

element_ids = array([3,5])
element_ids_vtk = numpy_to_vtk (element_ids, deep=1, array_type=vtk.VTK_ID_TYPE)
distributions = ones ((2,)) * vtkbone.vtkboneConstraint.FACE_Z1_DISTRIBUTION

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraint.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraintCollection.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraintCollection.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraint.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraint.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneConstraint.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 35 / 206

distributions_vtk = numpy_to_vtk (distributions, deep=1, array_type=vtk.VTK_ID_TYPE)
distributions_vtk.SetName ("DISTRIBUTION")
senses = array ([0,2]) # x-axis, z-axis
senses_vtk = numpy_to_vtk (senses, deep=1, array_type=vtk.VTK_ID_TYPE)
senses_vtk.SetName ("SENSE")
total_load = 6900
values = total_load * ones(2, float) / 2
values_vtk = numpy_to_vtk (values, deep=1, array_type=vtk.VTK_ID_TYPE)
values_vtk.SetName ("VALUE")
constraint = vtkbone.vtkboneConstraint()
constraint.SetName ("a_custom_applied_load")
constraint.SetIndices (element_ids)
constraint.SetConstraintType (vtkbone.vtkboneConstraint::FORCE)
constraint.SetConstraintAppliedTo (vtkbone.vtkboneConstraint::ELEMENTS)
constraint.GetAttributes().AddArray (distributions)
constraint.GetAttributes().AddArray (senses)
constraint.GetAttributes().AddArray (values)
model.GetConstraints().AddItem (constraint)

Tip
You can apply loads to nodes instead of to elements if you desire. You must create a constraint by hand to do this, as there is
no convenience method provided for this purpose. This is most sensible when you desire to apply a point force (i.e. to a single
node). Be careful about applying forces to nodes because applying a constant force to each of a set of nodes on a surface is
not equivalent to applying a uniform pressure to that surface. By contrast, applying a constant force to a set of element faces
is equivalent to a uniform pressure, which is why it is usually more convenient to define loads on element faces.

Important
Applied loads are additive. That is, if you create more than one applied load on a particular element face, the loads will
add. Displacement boundary conditions by contrast are unique. If you create more than one displacement boundary
condition applying to a particular node and sense, then only one of them will be used by the solver, and the other will be
discarded. Which of multiple boundary conditions applying to the same degree of freedom is used is indeterminate, so
it is a logical error to create multiple different boundary conditions applying to the same degree of freedom. No warning
or error message will be generated in the case of multiple boundary conditions on the same degree of freedom. (It is
sometimes convenient to be able to do so in cases where the actual value used turns out not to matter).

An example of adding an applied load is given in the tutorial Deflection of a cantilevered beam: adding custom boundary
conditions and loads.

3.15 Optional: Adding a convergence set

Adding a convergence set is optional, but it allows the solver to use the convergence set convergence measure, which is generally
the best one for linear models. Best in this context means that the solver can reliably identify when a certain precision has
been obtained, and thus stop iterating. Less tailored convergence measures, which don’t require the definition of a convergence
set, must be more conservative, and thus run to more iterations to be certain of obtaining a given precision. See Convergence
measure.

Convergence sets are most conveniently defined with the method ConvergenceSetFromConstraint of vtkboneFiniteEle-
mentModel. You simply pass it the most relevant boundary condition or applied force. “Most relevant” simply means the one
you are most interested in.

For example, the standard compression tests generate their convergence sets with

model.ConvergenceSetFromConstraint("top_displacement")

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 36 / 206

Here top_displacement is the name of the boundary condition on the top surface. This results in a convergence set which is
equivalent to the total force on the top surface.

In Section 7.6, an applied force is defined on the tip of a cantilever, and the convergence set is generated with

model.ConvergenceSetFromConstraint("end_force")

This results in a convergence set which is the average displacement of the tip of the cantilever.

However defined, if convergence set is used as the convergence measure, then the solver watches that quantity to determine when
it has ceased to change meaningfully, and thus, when iterating can be stopped.

Warning
You cannot define a convergence set that consists entirely of fixed nodes. That is, entirely of boundary condition nodes
that are set to zero displacement. This is because the solver internally elimates these degrees of freedom, and is hence
unable to calculate the corresponding forces during iterations.

3.16 Ensuring your model is well-defined

It is possible to create a model that is degenerate, or not well-defined. In other words, a model that has not a single solution, but
many solutions (typically an infinite number). As a linear algebra problem, such a problem has a singular global stiffness matrix.
For example, consider the standard uniaxial problem where a sample volume is compressed between two hard parallel plates.
(See uniaxial test in the chapter on n88modelgenerator). If we specify no contact friction, then although the sample compresses
in a predictable way between the two plates, it is free to slide around as a whole (translate) anywhere between the plates. For
the particular case of the uniaxial model, n88modelgenerator provides the option to add a pin, which consists of the following
additional constraints:

1. fix the x,y senses of an arbitrary node, and

2. fix one sense of another node (usually from the same element).

The first constraint is sufficient to prevent translation, and the second constraint is required to prevent rotation.

Models with only applied loads and no displacement boundary conditions are always ill-defined.

Practically, n88solver will usually solve even ill-defined problems. In fact, for the type of ill-defined problem described here,
it often does so faster than the equivalent well-defined problem (i.e. one with added “pin” constraints to make it non-singular).
Many types of ill-defined problems can cause n88solver to converge much more slowly. For example, see the discussion on
Ensuring connectivity. Not all solvers however can handle ill-defined problems, so this should be avoided when exporting models
to other solvers. Also, if you would like overlay the renderings of two similar ill-defined problems or compare differences in any
way, it is usually necessary to first register them to eliminate meaningless differences (such as overall translations or rotations in
the example described).

3.17 Setting post-processing parameters

If you have followed every step, then you have a model that is completely defined for the solver. In fact you could save it to a
file and solve it now. The post-processor n88postfaim however requires a bit more information so that meaningful results can be
extracted from the solved model. n88postfaim calculates certain quantities with reference to node or element sets. For example,
in a compression test the relevant sets correspond to the top and bottom faces, as we are interested principally in the forces on
these faces. These sets already exist (“face_z0” and “face_z1”), as we previously used them to apply boundary conditions. We
need to list the relevant node sets to be used by n88postfaim. Of course, if you’re doing some custom post-processing that does
not involve n88postfaim, then this step is optional and can be skipped. Setting the post-processing node sets involves setting
some “information” with a key (this may seem slightly obscure, but it is a standard VTK technique):

Faim Finite Element Analysis Manual 37 / 206

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()
pp_node_sets_key.Append (info, "face_z0")
pp_node_sets_key.Append (info, "face_z1")

Any number of sets may be specified for post-processing. n88postfaim requires the element sets as well as the node sets, and
they must match exactly, meaning that the nth post-processing element set must be exactly those elements which contain any of
the nodes of the nth post-processing node set. (The element set name is not required to be the same as the node set name).

If you’ve used vtkboneApplyTestBase to get pre-defined node and element sets, then you already have the corresponding element
sets, and in fact they have the same names, so

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()
pp_node_sets_key.Append (info, "face_z0")
pp_node_sets_key.Append (info, "face_z1")
pp_elem_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_ELEMENT_SETS()
pp_element_sets_key.Append (info, "face_z0")
pp_element_sets_key.Append (info, "face_z1")

If you’ve created custom node sets, then you can obtain the corresponding element sets with the method GetAssociatedEle-
mentsFromNodeSet(), so for example (taken from the screw pull-out tutorial),

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()
pp_elem_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_ELEMENT_SETS()
for setname in ["bone_top_visible", "screw_top"]:

pp_node_sets_key.Append (info, setname)
elementSet = model.GetAssociatedElementsFromNodeSet (setname)
model.AddElementSet (elementSet)
pp_elem_sets_key.Append (info, setname)

Examples of setting post-processing parameters are given in the tutorials Deflection of a cantilevered beam: adding custom
boundary conditions and loads and Advanced custom model tutorial: a screw pull-out test.

3.18 Filters for creating standard tests

For each of the standard tests, namely the ones that n88modelgenerator can generate, there is a filter to generate the test, complete
with all displacement boundary conditions, applied forces, and relevant post-processing sets. Of course, it is easier to just simply
use n88modelgenerator for these cases rather than write a script. However, these filters provide more options than are exposed
by n88modelgenerator, and a script will allow you to access these options. Furthermore, sometimes a standard model is nearly,
but not quite, what you want. In this case, the fastest way to proceed is to use a standard test generating filter, and then tweak the
resulting model.

All the standard test filters are subclasses of vtkboneApplyTestBase (see Creating node and element sets), so that they support
variable orientation as defined by the Data Frame and the Test Frame, as well as having the standard sets defined (“face_z0”,
etc. . .)

The following table lists the standard model filters.

Table 3.2: vtkbone filter classes that generate standard models

vtkbone filter n88modelgenerator test types
vtkboneApplyCompressionTest uniaxial, axial and confined
vtkboneApplySymmetricShearTest symshear
vtkboneApplyDirectionalShearTest dshear
vtkboneApplyBendingTest bending
vtkboneApplyTorsionTest torsion

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplySymmetricShearTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyDirectionalShearTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyBendingTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTorsionTest.html

Faim Finite Element Analysis Manual 38 / 206

For details on the options supported by these filters, refer to the API documentation.

An example of using a standard test filter is given in the tutorial Compressing a cube revisited using vtkbone.

3.19 Modifying a finite element model

Often a standard model type will be very close to the desired test configuration, but some modifications are needed. Every part
of vtkboneFiniteElementModel can be modified, or even deleted, after creation. There are in general too many possibilities to
enumerate here.

If a model is already written as an n88model file, it can be read with vtkboneN88ModelReader , modified, and rewritten.

3.20 Updating the history and the log

It is good practice (but not strictly necessary) to add relevant details to the History and Log fields of a model before writing it
out. This will assist greatly in the future if it is required to trace back the origins and history of a given n88model file.

The history and comments of an n88model file can be viewed with the command

n88modelinfo --history --comments myfile.n88model

You can leave out the --history and --comments arguments, although then you will get a lot more information about the
model, possibly more than you want.

The History field should have one line per executable that modifies the model file. This line should start with a time/date stamp
and briefly state the program (and perhaps the user) which modified or created the file. History can be added with the method
AppendHistory(); the date/time stamp will be automatically added. For example

model.AppendHistory("Created with screwpullout.py version 6.0")

The Log field is intended to record any other information that would be useful to be able to recover at a later time. Every addition
can be any number of lines long. You should record any parameters or settings that are relevant here. As for AppendHis-
tory(), AppendLog() will add a date/time stamp (although on its own line). It will also ensure that every addition to the
Log is separated by a black line from other additions to Log, for ease in reading it. For example

settingsText = ["Configuration:",
"input file = %s" % input_image_file,
"output file = %s" % output_faim_file,
"bone material id = %s" % bone_material_id,
"bone material Young’s modulus = %s" % bone_material_modulus,
"bone material Poisson’s ratio = %s" % bone_material_poissons_ratio,
"screw material id = %s" % screw_material_id,
"screw material Young’s modulus = %s" % screw_material_modulus,
"screw material Poisson’s ratio = %s" % screw_material_poissons_ratio,
"screw displacement = %s" % screw_displacement,
"inner ring radius = %s" % inner_ring_radius,
"bone constraint max depth = %s" % bone_constraint_max_depth]

model.AppendLog ("\n".join(settingsText)) v1
v1 This might look pretty weird if you’re not a Python guru. settingsText is a Python list of strings (each of one line).

"\n".join(settingsText) joins them all into one long string, separated by line returns.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelReader.html

Faim Finite Element Analysis Manual 39 / 206

Tip
A particularly clever trick if your script uses a configuration file to set values, one which is used by n88modelgenerator, and also
used in the above example (which is from the screw pull-out tutorial), is to write the settings into the Comment field in exactly
the same format that they appear in the configuration file. Then, if ever the data need to be exactly re-created for some reason,
the settings can be copied from the Log and pasted directly into a new configuration file. The script can then be rerun with that
configuration file without any further editing.

Examples of adding information to the history and to the log are given in the tutorials Compressing a cube revisited using
vtkbone, Deflection of a cantilevered beam: adding custom boundary conditions and loads and Advanced custom model tutorial:
a screw pull-out test.

3.21 Writing a model file for input to the solver

When your vtkboneFiniteElementModel is the way you like it, writing a file is straightforward:

writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInput (model)
writer.SetFileName ("a_snazzy_model.n88model")
writer.Update()

Other formats can also be written using the appropriate writer including,

• vtkboneFaimVersion5InputWriter , and

• vtkboneAbaqusInputWriter .

3.22 Visualizing intermediate results

When developing a complicated model, it is often a good idea to write out intermediate results that can be visualized. This can
be done either by writing out intermediate geometries and node sets using standard VTK file format writers, such as vtkXMLUn-
structuredGridWriter and vtkXMLPolyDataWriter , or by writing the model with vtkboneN88ModelWriter as early as possible
as you build up your script, before the model is complete. Even incomplete models can be visualized. The tool n88extractsets is
handy to extract and visualize node and element sets, as well as boundary conditions and applied loads.

For an example of visualizing intermediate results as the model is built up, see Advanced custom model tutorial: a screw pull-out
test.

3.23 Error handling

VTK classes do not throw exceptions or halt execution when an error occurs. If catching error conditions is important to you,
you need to provide a VTK observer class. For more information, refer to http://www.vtk.org/Wiki/VTK/Tutorials/Callbacks .
However, if you don’t provide an error observer (and most often, you won’t want to be bothered to), you will still be informed
about error conditions by a message printed to standard out (i.e. to the console). For scripting purposes, this is generally adequate.

If you do want to trap the error, here is an example in Python.

class ErrorObserver:
def __init__(self):

self.__ErrorOccurred = False
self.__ErrorMessage = None
self.CallDataType = ’string0’

def __call__(self, obj, event, message):
self.__ErrorOccurred = True

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFaimVersion5InputWriter.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAbaqusInputWriter.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLUnstructuredGridWriter.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLUnstructuredGridWriter.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLPolyDataWriter.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelWriter.html
http://www.vtk.org/Wiki/VTK/Tutorials/Callbacks

Faim Finite Element Analysis Manual 40 / 206

self.__ErrorMessage = message
def ErrorOccurred(self):

occ = self.__ErrorOccurred
self.__ErrorOccurred = False
return occ

def ErrorMessage(self):
return self.__ErrorMessage

errorObserver = ErrorObserver()

reader = vtkbone.vtkboneN88ModelReader()
reader.AddObserver ("ErrorEvent", errorObserver)
reader.SetFileName (filename)
reader.Update()

if errorObserver.ErrorOccurred():
print "ERROR reading file: ", errorObserver.ErrorMessage()
sys.exit (-1)

vtkbone provides a very simple error observer class, vtkboneErrorWarningObserver . Its use however is limited to C++ code; use
the above example for Python.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneErrorWarningObserver.html

Faim Finite Element Analysis Manual 41 / 206

Chapter 4

Solving Linear Problems

4.1 Obtaining solutions to linear problems using n88solver_slt

For a model with only linear elastic materials, the solver can be run as follows

n88solver_slt myfile.n88model

In special cases, you may want to use n88solver_sla instead of n88solver_slt: See Efficient Handling of Large Num-
bers of Material Definitions. Everything in this section applies equally well to that solver.

The solution as expressed as displacements - from the original position - at node. The displacements are written into the input
file; no additional output file is created. If the n88model file contains an existing solution, it will be overwritten. Furthermore,
if there is an existing solution, it will be used as a starting point for the solver for further iterations. This behaviour is not always
desired and can be suppressed; see restart for details.

Tip
To check whether an n88model file has already been solved, the following command is useful

n88modelinfo --history --solutions myfile.n88model

See Section 9.12 for more details.

The complete list of arguments to n88solver is given in the Command Reference chapter.

4.2 Convergence

n88solver_slt is a pre-conditioned conjugate gradient solver which improves the solution through an iterative process. Therefore
it is necessary to define a convergence criterion that defines when the solution is good enough, and the iterating can stop.

Convergence measure

n88solver_slt provides the options to select from among different convergence measures. See convergence_measure.

The traditional convergence measure is the maximum change over all degrees of freedom. We call this method maximum du.
Mathmatically, for the ith iteration it is defined as

ei =
max j|xi, j− xi−1, j|

max j|xi−1, j|

where xi,j is the displacement of the jth degree of freedom at the ith iteration. The maximum is taken over all degrees of freedom.

Faim Finite Element Analysis Manual 42 / 206

The difficulty with this convergence measure is that it is not clear what numerical value of tolerance is optimal, as it is not obvious
how it relates to quantities that a user would be directly interesting in. Although the convergence measure is unitless, there is in
fact no consistent relationship between ei and the relative precision of quantities such as displacement and force. Therefore the
tolerance must be chosen conservatively based on experience.

In version 8, we introduced a new convergence measure, which we call a convergence set. Essentially, this is a parameter, c,
equivalent directly to a quantity of interest to the user. This parameter depends on the model. For example for a compression test
with fixed strain or displacement, it would be equivalent to the reaction force on the top surface (more precisely the top boundary
condition). On the other hand, if you define a compression test with a given force, in that case an appropriate parameter c would
be the average displacement of the top surface. The solver continues iterations until the relative change in c from iteration to
iteration falls below a specified threshold:

ei =
|ci− ci−1|
|ci−1|

The choice of tolerance is now straight-forward: if you want to obtain a certain relative precision in your calculated reaction
force for example, let us say one part in 104, then you allow a bit of a safety margin and chose for example a tolerance of 10-5.

Clearly the difficulty is now in defining the quantity c. Fortunately, the standard faim model generator tools, including n88modelgenerator
and vtkbonewill define a suitable one for you. For the standard tests, it is the complement of the most important moving bound-
ary condition, or most important applied force, as appropriate. By the complement, we mean that c is calculated as a force in
the case of a boundary condition; conversely it is calculated as an average displacement in the case of an applied force. The
definition of c therefore consists of defining a convergence set, which is some collection of degrees of freedom, together with
some specification of what is to be calculated over this collection of degrees of freedom. It is exactly analogus to a constraint,
which is internally how boundary conditions and applied forces are stored in n88model files; a convergence set is stored in a
similar manner in an n88model file. See n88model File Format. Clearly, in the case that no convergence set is defined in the
n88model file, the convergence set method for determining convergence cannot be used. In this case, the solver will fall
back to the traditional maximum du method.

Regardless of the convergence measure chosen, the convergence measure does not decay smoothly, but can be jumpy or noisy.
Therefore, a convergence window is introduced, so that iterations are not terminated prematurely by a randomly low convergence
measure value. To be considered converged, the convergence measure ei must remain below the threshold for at least the specified
number of consecutive iterations. For the maximum du method, we have found by experience that a convergence window of 3
is typically sufficient. For the convergence set method, because it looks at only a part of the whole model, we have found that
the convergence window must be increased as the number of degrees of freedom increases. Based on empirical analysis of many
models, we suggest the following formula for the convergence window

w = 0.16
√

n

where n is the number of nodes in the model. This formula is in fact what the solver will use if you don’t explicitly chose another
value with the parameter convergence_window.

Maximum iterations

In addition to the convergence criterion described above, a maximum number of iterations can be set. This is useful for stopping
the iterating if the thresholds have been set too low (i.e. too strictly). Sometimes we may want to stop and perform a more
sophisticated analysis of the quality of the solution before deciding if we want to proceed with further iterations.

Note that no matter how the solver terminated, we can re-launch it, possibly with different convergence criteria. By default,
the solver will use an existing solution as the starting point and continue to refine it from where it left off. Note however, that
not all the numerical parameters of the conjugate gradient method are stored in the n88model file. Therefore, stopping and
re-starting the solver does not result in precisely the same progression of iterations as compared with simply letting the solver
run uninterupted. Some additional iterations are required to reconstruct the conjugate gradient information.

If you want to make a close investigation of the convergence of your model as the solver iterates, you can make use of the
iterations_file option to output all iteration data to a file. It can be informative to plot these data on a log-log graph (convergence
measure ei versus iteration number i).

4.3 Evaluating solution quality

For a linear problem, the solver is solving a system equivalent to

Kx = f

Faim Finite Element Analysis Manual 43 / 206

where x are the displacements, f are the forces (including all the internal forces on each node), and K is a global stiffness matrix.
The solver never actually constructs K; the memory requirements would be prohibitive, as K is a matrix of size N2, where N is
the number of degrees of freedom. The residuals are defined as

r = Kx− f

For the exact solution, the residual vector is identically zero. As we are obtaining a numerical solution rather than an exact
solution, we cannot in practice obtain exactly zero-valued residuals. The remaining value of the residuals is a good measure of
the accuracy of the solution, with smaller residuals indicating a closer match to the unobtainable perfect solution.

To answer the question, “What is a good value for the residuals?”, observe that the residuals have units of force. We therefore
need to compare with a characteristic force in the system.

Numerics88 provides a tool, n88evaluate, to evaluate a solution. It is run like this

n88evaluate myfile.n88model

The output related to the residuals looks like this

Analysis of forces (residuals):
max err : 3.00E-07
rms err : 3.15E-08
max err/max force : 3.51E-06
rms err/max force : 3.68E-07

The second two numbers are the maximum and RMS residuals, scaled to the maximum nodal force in the solution. These values
are a measure of the relative error. Note that this error is only the mathematical error of the solution to the stated system of
equations. There are naturally other sources of error, such as that due to the measurement and discretisation of the physical
object, and the error in determining the material properties of the object. When the solver is working normally, these other
sources of error will be much larger than the remaining mathematical error in the solution obtained by the solver.

n88evaluate also performs a check that the boundary conditions are indeed satisfied:

Analysis of solution displacements at boundary conditions:
max err : 0.00E+00
rms err : 0.00E+00

This is a trivial check: anything other than zero or very small values indicates a problem with solver.

Faim Finite Element Analysis Manual 44 / 206

Chapter 5

Solving Nonlinear Problems

5.1 Obtaining solutions to nonlinear problems with n88solver_spt

If you have defined plasticity for any materials used in your model, then you must use the solver n88solver_spt, which is a solver
suitable for small-strain elastoplastic models. This solver is invoked exactly as is n88solver_slt. It recognizes a couple
of additional options related to the plastic convergence. To solve an elastoplastic model, the solver first obtains a linear elastic
solution, and then performs a plastic iteration to update the plastic strain. This is repeated until the plastic convergence criterion
is met. Thus linear solutions, consisting of many linear iterations, alternate with single plastic iteration steps.

Note
It is perfectly possible to run n88solver_spt on a model with only linear elastic material definitions. n88solver_spt
takes no longer to run on a linear model than does n88solver_slt. However it does use more memory. Conversely, it is
also possible to run n88solver_slt on a model containing elastoplastic material definitions. In this case, the plasticity is
simply ignored, and the linear solution will be obtained.

5.2 Convergence

For elastoplastic problems, the default convergence measure remains the traditional dumax method, instead of the new con-
vergence set method. See Convergence measure. The reason for this is that, not infrequently the addition of plasticity has
only a small effect on quantities like reaction force. In these cases, observing a quantity such as the total reaction force to deter-
mine convergence does not work well for the plastic iterations. Furthermore, when solving an elastoplastic problem, we are more
likely to be interested in quantities pertaining to the entire volume, such as the number and location of yielded elements, rather
than only quantities that are calculated over just a boundary condition, such as reaction force. Recall that the dumax convergence
measure is calculated over all degrees of freedom, while the convergence set convergence measure is typically calculated
over a chosen boundary condition.

Faim Finite Element Analysis Manual 45 / 206

Tip
As was the case for linear files, you can generate a file with all the iteration data using the option iterations_file. For elastoplastic
solutions, this file can be quite large. Here is a command to extract just the last linear iteration of every plastic iteration step,
which often contains all the information we are looking for (i.e. the full plastic evolution, as well as the linear tolerance for each
plastic iteration, and the number of linear iterations required at each plastic step).

awk ’$2!=previous {print line; previous=$2}
$2==previous {line = $0; previous=$2}’ iterations.txt

This command can be run in Linux and macOS, as well as in a Bash shell in Windows 10. In case you don’t have awk, here is
a Python script that does the same thing

lines = open("iterations.txt").readlines()
output = [p for (l,p) in zip(lines,[lines[0]] + lines[:-1]) if l.split()[1] != p.split() ←↩

[1]]
for o in output: print o,

5.3 Obtaining accurate nonlinear solutions by progressively applying loads

In contrast to a linear elastic model, there is in general no single unique solution for a given end-state of a system with elastoplastic
characteristics. As discussed in the section plasticity in the chapter Preparing Finite Element Models with n88modelgenerator,
elastoplastic models exhibit irreversibility and hysteresis, and thus have a path dependence. In other words, a dependence not
only on the final state, but on the history in obtaining the final state. For a real object, the history is the time-dependence of
the state, presumably starting from some initial neutral state. Within the solver, it is not necessary (or possible) to account for
a continuous time dependence of the state: nevertheless even if we solve for a single end state of an elastoplastic model, the
solver necessarily traces a path in a mathematical space from some starting point to the final solution. Just as for the real physical
situation, this path in mathematical space can affect the final solution. Therefore, the most strictly correct approach to solving
nonlinear elastoplastic problems is to incrementally apply loads (or strains), starting with a solution at or near the elastic limit
(i.e. near the onset of nonlinear behaviour), and obtaining a complete solution at each load increment, until the final state is
obtained. This is obviously more complicated than a single all-at-once solution, and also more time-consuming. The question
is, does this make any practical difference? Frequently, for loads applied monotonically in a single direction, the answer is no.
Conversly, if your physical situation involves increasing and decreasing a load, or changing the direction of an applied load,
then it is important to model this load history. A tutorial demonstrating the incremental application of a load to an elastoplastic
problem is A cantilevered beam with elastoplastic material properties .

5.4 Evaluating nonlinear solution quality

Evaluating the correctness of an elastoplastic solution is more subtle than evaluating the correctness of a linear elastic model, for
the simple reason that, as mentioned in the previous section, there is no single unique solution to an elastoplastic problem.

There are nevertheless some measures we can use. Internal forces must still balance, and we can examine the residuals, as in
Evaluating solution quality in the section on linear models.

When examining the yield strain, there must be no unyielded elements for which a positive yield function is calculated. Here is
the check of that in n88evaluate:

Analysis of yield function F:
Unyielded elements with F>0:

count : 0
max F : -
rms F : -
max F/max stress : -
rms F/max stress : -

Faim Finite Element Analysis Manual 46 / 206

Actually in rare cases, a small number of unyielded elements might have very small positive values of yield function, but in this
case, the values should be very small indeed.

Secondly, one might expect all the yielded elements in the solution (i.e. those elements with a nonzero plastic strain) to lie on
the yield surface (F=0). In fact, this is not necessarily the case. Even in an elastoplastic model carefully solved with incremental
applied test strain, it may happen that some elements reach the yield stress (i.e. the yield surface) for some value of applied test
strain, but then actually experience a substantially reduced stress at a higher applied test strain, due to the mechanical failure or
yield of some other part of the model. Thus it is perfectly possible to have an end-state solution in which some elements are
observed to have non-zero plastic strains but are in a stress state much less than the yield stress (i.e. well inside the yield surface).
More common though is for yield elements to have a very small remnant positive yield function, which is somewhat analogous
to the residual in the linear case.

Values related to the yield function calculated for all yielded elements are reported by n88evaluate, as shown in this example:

Analysis of yield function F:
Yielded elements:

count : 2058
min F : -1.85E+01
max F : 1.08E-04
rms F : 7.77E+00
min F/max stress : -2.12E-01
max F/max stress : 1.23E-06
rms F/max stress : 8.88E-02

In light of the above discussion, the important value is max F/max stress: it can be used as a measure of the relative error
of the plastic component of the solution.

Faim Finite Element Analysis Manual 47 / 206

Chapter 6

Post-Processing and Analysis

6.1 Calculating additional solution fields with n88derivedfields

The fundamental solution from n88solver are the displacements on each node. However, this is often not the only value of
interest. Subsequently running n88derivedfields on the n88model file will generate additional fields and add them to the active
solution in the file.

Tip
To check which solution fields are present in a n88model file, run

n88modelinfo --solutions your_model.n88model

The following are the additional fields that will be added to the n88model file by n88derivedfields.

ReactionForce

The reaction force at each node, in the 3 coordinate directions (fx,fy,fz). For a linear problem the reaction force is given by

f = Kx

This is of course the same equation that the solver has solved, except that now we use it with the solution values for x (the
displacements) to determine forces. If the solution is accurate, then the forces will be nearly all zero, except on degrees of
freedom where a boundary condition (displacement or applied force) applies. Those therefore are the interesting values.

Strain

The strain at each element, given by εxx, εyy, εzz, γyz, γzx, γxy, where ε ii is the engineering normal strain along the axis direction
i, and the γ ij are the engineering shear strains.

Note that the field Strain is always the total strain, so that for elasto-plastic models, the elastic strain can be obtained by
subtracting PlasticStrain from Strain.

PlasticStrain

The plastic strain at each element. The plastic strain is the irreversible strain that arises from further deformation once the elastic
limits as defined by the yield surface as been reached. PlasticStrain has the same 6 components as Strain.

Stress

The stress at each element, given by σxx, σyy, σ zz, σyz, σ zx, σxy .

Note that the stress can be obtained directly from the strain (and vice versa) using the material properties. See Elastic material
properties.

VonMisesStress

Faim Finite Element Analysis Manual 48 / 206

The von Mises stress is a scalar value that is frequently used as a yield criterion. It is also used as a heuristic measure of the
“magnitude” of the stress at a point, for example for the purpose of coloring a rendering according to stress concentration. It is
defined on each element by

σ
2
ν =

1
2
(
(σxx−σyy)

2 +(σyy−σzz)
2 +(σzz−σxx)

2)+3
(
σ

2
yz +σ

2
zx +σ

2
xy
)

It can also be expressed more concisely as a norm of the devatoric stresses. For details refer to any Mechanics of Solids textbook.

StrainEnergyDensity

The strain energy density is given by

U =
1
2
(σxxεxx +σyyεyy +σzzεzz +σyzγyz +σzxγzx +σxyγxy)

This expression continues to be valid even for nonlinear elastoplastic models, provided that the strain values are limited to the
elastic strain component.

In a finite element context, the strain energy density is a scalar value defined on each element.

6.2 Exporting solution fields from the model file

If n88postfaim, which is described in the next section, provides the values which are of interest to you, you will not need the
numerical data of the solution fields. In other cases, where you want do some custom post-processing on the solution, it will be
necessary to obtain the solution fields as array data. There are several options for obtaining the field data from an n88model
file:

1. Use n88extractfields to export fields to a text file. This is convenient because text files are easy to understand and easy to
import. The trade off is that text files are inefficient in terms of disk space required, and relatively slow to write and read.

2. Use the vtkbone object vtkboneN88ModelReader . This requires writing some code in C++ or Python.

3. Import the data into third party software that can read NetCDF4 or HDF5.

6.3 Obtaining standard post-processing values with n88postfaim

n88postfaim is a tool performs a number of standard analyses on a solved n88model file. It produces a text file output
reporting summarized results in a table format.

6.3.1 Running n88postfaim

n88postfaim requires that n88derivedfields has been run on the solved n88model file because it makes use of the derived
fields. If any field is required for a particular table, but is not present in the n88model file, n88postfaim will simply silently
skip that table.

In the usual case, running n88postfaim is as simple as,

n88postfaim -o analysis.txt radius_slice82_bending.n88model

This will generate an output file analysis.txt. The output is a report of values that are commonly of interest in finite element
calculations.

The sections below will discuss a few important options that affect the output of n88postfaim. For a complete list of arguments
supported by n88postfaim, see the Command Reference chapter.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelReader.html

Faim Finite Element Analysis Manual 49 / 206

Note
The model radius_slice82_bending.n88model, which is used in examples below, can be generated from the data
file radius_slice82.aim, with the following command:

n88modelgenerator --test=bending radius_slice82.aim

This data file is provided for the radius compression tutorial, but here we apply a bending test so that angular analysis quantities
such as torques are defined. This model also has been segmented to have more than one material ID. In particular, ID 127 is
used to identify cortical bone and ID 100 is used to identify cancellous bone.
This applies to all tables except Plastic Strain, for which the flag --plasticity=vonmises,40 was added to the
n88modelgenerator arguments.

6.3.1.1 Specifying post-processing node and element sets

Some of the quantities that n88postfaim reports are calculated with respect to defined node and/or element sets. For example,
for a compression test, the forces on the top and bottom surfaces are of interest. If we define node and element sets corresponding
to these surfaces, then n88postfaim will, amongst other things, calculate these forces for us. Post-processing node and
element sets must be defined during the model generation stage. If you used n88modelgenerator, some relevant node and element
sets have automatically been defined. For custom models generated with vtkbone see Creating node and element sets.

The available sets in an n88model file can be discovered with n88modelinfo. For example, the command

n88modelinfo --sets --element_sets radius_slice82_bending.n88model

gives the following output:

NodeSets:
--

Name : face_z0
Part : Part1
NumberOfNodes : 40032

Name : face_z1
Part : Part1
NumberOfNodes : 25991

Name : face_x0
Part : Part1
NumberOfNodes : 15

Name : face_x1
Part : Part1
NumberOfNodes : 14

Name : face_y0
Part : Part1
NumberOfNodes : 27

Name : face_y1
Part : Part1
NumberOfNodes : 17

--

ElementSets:
--

Name : face_z0
Part : Part1
NumberOfElements : 28999

Faim Finite Element Analysis Manual 50 / 206

Name : face_z1
Part : Part1
NumberOfElements : 21210

Name : face_x0
Part : Part1
NumberOfElements : 8

Name : face_x1
Part : Part1
NumberOfElements : 6

Name : face_y0
Part : Part1
NumberOfElements : 12

Name : face_y1
Part : Part1
NumberOfElements : 8

--

Given that the sets of interest have been generated and are present in the n88model file, we must tell n88postfaim which to
actually use. Much of the time this is also done at the model generation stage. For models generated with vtkbone, see Setting
post-processing parameters. n88modelgenerator also writes a list of sets to use into the n88model file, but note that this list
often does not encompass all of the available sets. For example, for any type of compression test, n88modelgenerator will only
list the top and bottom surface sets to be used for post-processing, although it generates node and element sets for all faces. In a
confined test the forces on the side faces are sometimes of interest, so this may be a case where the list of post-processing sets as
generated by n88modelgenerator is insufficient. n88postfaim has command line options that allow us to override the list of
post-processing sets from the n88model file. Here an example:

n88postfaim --node_sets face_y0,face_y1 --element_sets face_y0,face_y1 -o analysis.txt ←↩
radius_slice82_bending.n88model

Note that for each node set, n88postfaim requires the corresponding element set. For example, for a set consisting of all the
nodes on a surface, we also require the set of all elements on the surface. n88modelgenerator (and vtkbone objects which
generate sets automatically) will generate sets such that the corresponding node and element sets have the same names. If this is
the case, that we have matching node and element sets, then a simpler but equivalent version of the above example command is

n88postfaim --sets face_y0,face_y1 -o analysis.txt radius_slice82_bending.n88model

6.3.1.2 Specifying a rotation center

Certain quantities, such as rotations and torques, are calculated relative to a reference point, or center. This reference point can
be specified in a number of ways:

1. For bending and torsion tests, n88modelgenerator will write a default rotation center into the n88model file, which will
be located at the center of mass of the model.

2. n88modelgenerator supports an argument central_axis that allows the reference point to be specified, as numerical coor-
dinates or as the center of mass or the center of bounds. The reference value will be written to the n88model file. If
specified, it overrides the above default.

3. n88postfaim supports an argument rotation_center that can be used to specify the reference point. If specified, it
overrides any value in the n88model file.

If the rotation point is not specified in one of these ways, then the corresponding analysis values and tables will not be calculated
or reported. This simplifies the analysis output for models for which these values are typically not of interest (e.g. an axial
compression test).

Faim Finite Element Analysis Manual 51 / 206

6.3.2 Description of output tables

Below are listed the tables provided in the output of n88postfaim.

Note that not all values or tables are generated for every model. Angular values are generated only if a rotation center is defined
(see the above section), while a break-down of values per material is only performed in the case that more than one material is
defined.

Important
n88postfaim knows nothing of the Test Frame coordinate system (see Test Orientation). All coordinate directions
in the analysis file are in the original Data Frame coordinate system. An exception is that the names of the sets, as
assigned by n88modelgenerator and listed in Table 3.1, are obtained from their orientation in the Test Frame.

Important
The table numbering is not fixed. Tables are simply numbered sequentially at the time they are generated. You cannot
rely on a certain table number consistently identifying a given table.

6.3.2.1 Model Input

This table lists general parameters of the model input.

Table 1: Model Input
--
Filename: radius_slice82_bending.n88model
Element dim X: 0.082
Element dim Y: 0.082
Element dim Z: 0.082
Number of elements: 2667590
Number of nodes: 3816642
Number of nodes per element: 8
Dimension of problem: 3

6.3.2.2 Materials

The material definitions as assigned to each material ID are listed. In addition, a very brief summary of the material definition is
provided, in particular the material type is shown, and a rough indication of the stiffness is given by the parameter Eii_max. For
an isotropic material, Eii_max is the Youngs modulus E, while for an orthotropic material it is the maximum of Exx, Eyy, and Ezz .
In addition, the total number of elements in the model having each material ID are shown, giving a measure of the distribution of
the materials.

Table 2: Materials
--
Number of materials: 2
--

m ID Name Type E_ii_max Elements
1 100 NewMaterial1 LinearIsotropic 6829.0 1351375
2 127 NewMaterial1 LinearIsotropic 6829.0 1316215

Note that in this example, it happens that although we have two material IDs (defined during segmentation), they are both
assigned to the same material definition.

The output will be somewhat different for material arrays, since material arrays correspond to a range of material IDs. Here is an
example:

Faim Finite Element Analysis Manual 52 / 206

Table 2: Materials
--
Number of materials: 1
--

m ID Name Type E_ii_max Elements
1 1..127 NewMaterial1_homminga LinearIsotropic - 7087

Also, for any of the tables described below for which sub-tables for each material ID are generated, it is to be noted that all
material IDs corresponding to a material array are grouped into a single subtable. This prevents the amount of output from
becoming excessive.

If you require more details about the materials defined, we recommend that you use the n88modelinfo command. For example

n88modelinfo --materials radius_slice82_bending.n88model

6.3.2.3 Post-processing sets

The sets used by n88postfaim are reported. See Specifying post-processing node and element sets .

Table 3: Post-processing Sets
--
Number of sets: 2
--

n Node set name Nodes Element set name Elements
1 face_z1 25991 face_z1 21210
2 face_z0 40032 face_z0 28999

6.3.2.4 Strain

Statistics of the six strain components for each element, namely the three engineering normal strains εxx, εyy, εzz and the three
engineering shear strains γyz, γzx, γxy

For models with elastoplastic material definitions, the strain given here is the total strain (i.e. the sum of the elastic and plastic
strains).

The strains are summarized in terms of statistical quantities, namely average, standard deviation, minimum and maximum, and
skewness and kurtosis. The median strain, 5th, 25th, 75th and 95th percentile strains are reported. Finally, the fraction of strains
that are below zero (i.e. compressive strain) is reported in addition to the median and average strain of the negative (compressive)
and positive (tensile) strain.

The summary of strains is provided for all elements in the model as well as being summarized for each specific material ID in the
case of more than one defined material. In this example model, this provides a means of considering differences in the summary
of strains in the cortex (e.g. material ID 127) separately from trabecular (e.g. material ID 100) bone.

Strain is dimensionless.

Table 4: Strain
--
m: ALL
Material ID: ALL
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -3.190E-04 -1.595E-04 5.405E-04 -7.457E-06 -2.048E-03 -3.663E-05
std_dev 2.099E-03 1.544E-03 6.843E-03 2.937E-03 4.153E-03 1.403E-03
minimum -2.150E-02 -1.771E-02 -6.982E-02 -5.306E-02 -7.585E-02 -3.298E-02
maximum 1.734E-02 2.012E-02 7.162E-02 4.388E-02 4.232E-02 2.821E-02
skewness -7.522E-01 -1.510E-01 4.932E-01 -8.113E-01 -9.770E-01 6.881E-02
kurtosis 1.184E+00 2.076E+00 3.916E-01 7.286E+00 3.599E+00 7.669E+00
median -3.340E-05 -8.509E-06 -1.603E-05 1.328E-04 -9.438E-04 -3.450E-05

Faim Finite Element Analysis Manual 53 / 206

perc05 -4.750E-03 -2.959E-03 -9.953E-03 -5.143E-03 -9.573E-03 -2.163E-03
perc25 -1.070E-03 -8.355E-04 -3.705E-03 -9.735E-04 -4.461E-03 -6.944E-04
perc75 7.472E-04 5.336E-04 3.638E-03 1.404E-03 3.828E-04 6.016E-04
perc95 2.837E-03 2.399E-03 1.409E-02 4.025E-03 3.254E-03 2.158E-03
--
m: 1
Material ID: 100
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -3.326E-04 -2.304E-04 9.468E-04 -2.711E-04 8.815E-05 -1.733E-05
std_dev 1.403E-03 1.296E-03 4.307E-03 2.824E-03 2.967E-03 1.433E-03
minimum -2.057E-02 -1.771E-02 -4.567E-02 -5.306E-02 -5.665E-02 -3.298E-02
maximum 1.734E-02 2.012E-02 6.647E-02 4.388E-02 4.232E-02 2.821E-02
skewness -9.487E-01 -5.547E-01 8.212E-01 -8.143E-01 -8.987E-01 -5.569E-02
kurtosis 5.294E+00 4.647E+00 4.572E+00 1.121E+01 9.849E+00 1.051E+01
median -9.529E-05 -5.413E-05 1.652E-04 -1.758E-05 7.115E-05 -7.972E-06
--
m: 2
Material ID: 127
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -3.049E-04 -8.671E-05 1.232E-04 2.632E-04 -4.240E-03 -5.645E-05
std_dev 2.629E-03 1.760E-03 8.690E-03 3.025E-03 4.054E-03 1.372E-03
minimum -2.150E-02 -1.667E-02 -6.982E-02 -3.880E-02 -7.585E-02 -1.501E-02
maximum 1.322E-02 1.588E-02 7.162E-02 3.375E-02 2.053E-02 2.617E-02
skewness -6.398E-01 -3.604E-02 4.942E-01 -8.592E-01 -1.007E+00 2.105E-01
kurtosis -2.316E-01 7.413E-01 -7.675E-01 4.422E+00 3.701E+00 4.171E+00
median 1.376E-04 9.347E-05 -2.057E-03 6.242E-04 -4.044E-03 -9.920E-05

Skewness is a measure of the asymmetry of the distribution of element stresses. Kurtosis is a measure of the “peakedness” of the
distribution of element stresses.

6.3.2.5 Plastic Strain

For models with elastoplastic material definitions, a table of plastic strain statistics is produced. To obtain the elastic strain,
subtract the plastic strain from the total strain, given in the previous table.

The presentation of the plastic strain the same format as for the total strain.

Plastic strain is dimensionless.

==
Table 5: Plastic Strain
--
m: ALL
Material ID: ALL
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -3.774E-04 -1.827E-04 5.602E-04 -2.491E-05 -1.051E-03 -4.255E-05
std_dev 2.441E-03 1.858E-03 4.103E-03 2.424E-03 3.285E-03 9.990E-04
minimum -6.403E-02 -6.146E-02 -9.844E-02 -1.862E-01 -1.647E-01 -1.062E-01
maximum 4.919E-02 4.925E-02 1.223E-01 1.418E-01 1.750E-01 7.206E-02
skewness -1.856E+00 -7.680E-01 1.454E+00 -3.772E+00 -3.946E+00 2.007E+00
kurtosis 1.172E+01 1.926E+01 1.147E+01 2.736E+02 8.944E+01 2.992E+02
median 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
perc05 -5.234E-03 -3.476E-03 -5.073E-03 -2.307E-03 -6.641E-03 -1.150E-03
perc25 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -9.717E-04 -5.828E-06
perc75 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
perc95 2.724E-03 2.380E-03 8.666E-03 2.226E-03 5.648E-04 9.484E-04
--
m: 1

Faim Finite Element Analysis Manual 54 / 206

Material ID: 100
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -2.516E-04 -2.011E-04 4.528E-04 -1.325E-04 -3.686E-05 2.363E-06
std_dev 1.569E-03 1.441E-03 2.876E-03 2.513E-03 2.424E-03 9.711E-04
minimum -6.084E-02 -6.146E-02 -9.844E-02 -1.862E-01 -1.647E-01 -1.062E-01
maximum 4.919E-02 4.925E-02 1.223E-01 1.418E-01 1.750E-01 6.961E-02
skewness -4.158E+00 -3.443E+00 3.959E+00 -5.739E+00 -3.362E+00 5.373E-02
kurtosis 5.475E+01 5.797E+01 5.475E+01 4.191E+02 3.503E+02 4.686E+02
median 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
--
m: 2
Material ID: 127
..

epsilon_xx epsilon_yy epsilon_zz gamma_yz gamma_zx gamma_xy
average -5.066E-04 -1.638E-04 6.704E-04 8.559E-05 -2.093E-03 -8.867E-05
std_dev 3.085E-03 2.205E-03 5.060E-03 2.324E-03 3.700E-03 1.025E-03
minimum -6.403E-02 -4.663E-02 -7.185E-02 -1.076E-01 -1.294E-01 -2.535E-02
maximum 3.604E-02 4.230E-02 1.107E-01 8.670E-02 3.620E-02 7.206E-02
skewness -1.209E+00 4.159E-02 7.811E-01 -1.199E+00 -4.140E+00 3.735E+00
kurtosis 4.603E+00 8.276E+00 3.481E+00 6.679E+01 4.224E+01 1.604E+02
median 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.584E-04 0.000E+00
==

6.3.2.6 Stress

Statistics of the six stress components for each element, including the normal stresses (σxx, σyy, σzz) and shear stresses (σyz,
σzx, σxy).

The presentation of the stress follows the same format as described for the Strain table.

Units depend on inputs, but typically displacements are expressed in millimeters (mm), forces in newtons (N), and stresses in
MPa. See Note about units.

Table 6: Stress
--
m: ALL
Material ID: ALL
..

sigma_xx sigma_yy sigma_zz sigma_yz sigma_zx sigma_xy
average -8.027E-01 -5.936E-01 3.083E+00 -1.959E-02 -5.378E+00 -9.621E-02
std_dev 1.315E+01 1.070E+01 5.073E+01 7.714E+00 1.091E+01 3.686E+00
minimum -2.380E+02 -2.004E+02 -5.796E+02 -1.394E+02 -1.992E+02 -8.662E+01
maximum 1.682E+02 1.632E+02 5.517E+02 1.153E+02 1.111E+02 7.410E+01
skewness -5.570E-01 4.960E-01 4.539E-01 -8.113E-01 -9.770E-01 6.881E-02
kurtosis 5.054E+00 4.068E+00 4.404E-01 7.286E+00 3.599E+00 7.669E+00
median -4.492E-01 -3.217E-01 -2.718E-01 3.489E-01 -2.479E+00 -9.062E-02
perc05 -2.244E+01 -1.716E+01 -7.487E+01 -1.351E+01 -2.514E+01 -5.681E+00
perc25 -7.064E+00 -5.724E+00 -2.868E+01 -2.557E+00 -1.172E+01 -1.824E+00
perc75 5.727E+00 2.874E+00 2.650E+01 3.687E+00 1.005E+00 1.580E+00
perc95 1.979E+01 1.944E+01 1.020E+02 1.057E+01 8.546E+00 5.668E+00
--
m: 1
Material ID: 100
..

sigma_xx sigma_yy sigma_zz sigma_yz sigma_zx sigma_xy
average 6.726E-01 3.019E-01 6.486E+00 -7.120E-01 2.315E-01 -4.551E-02
std_dev 1.009E+01 7.009E+00 3.126E+01 7.418E+00 7.793E+00 3.764E+00
minimum -1.424E+02 -1.625E+02 -3.346E+02 -1.394E+02 -1.488E+02 -8.662E+01
maximum 1.682E+02 1.632E+02 5.062E+02 1.153E+02 1.111E+02 7.410E+01
skewness 3.128E-03 4.413E-01 7.910E-01 -8.143E-01 -8.987E-01 -5.569E-02

Faim Finite Element Analysis Manual 55 / 206

kurtosis 8.270E+00 1.406E+01 4.799E+00 1.121E+01 9.849E+00 1.051E+01
median 8.653E-02 -4.944E-03 8.636E-01 -4.619E-02 1.869E-01 -2.094E-02
--
m: 2
Material ID: 127
..

sigma_xx sigma_yy sigma_zz sigma_yz sigma_zx sigma_xy
average -2.317E+00 -1.513E+00 -4.100E-01 6.914E-01 -1.114E+01 -1.483E-01
std_dev 1.554E+01 1.341E+01 6.472E+01 7.944E+00 1.065E+01 3.604E+00
minimum -2.380E+02 -2.004E+02 -5.796E+02 -1.019E+02 -1.992E+02 -3.943E+01
maximum 1.506E+02 1.427E+02 5.517E+02 8.865E+01 5.392E+01 6.873E+01
skewness -5.163E-01 5.951E-01 4.757E-01 -8.592E-01 -1.007E+00 2.105E-01
kurtosis 3.035E+00 1.604E+00 -7.415E-01 4.422E+00 3.701E+00 4.171E+00
median -3.882E+00 -2.612E+00 -1.698E+01 1.640E+00 -1.062E+01 -2.606E-01

6.3.2.7 Strain Energy Density

Statistics on the strain energy density are reported. See StrainEnergyDensity in Section 9.5 for a definition of the strain energy
density.

For models with elastoplastic material definitions, the strain energy density is the elastic strain energy density. (Plastic strain
energy density is not well defined: the work done producing a given a plastic strain is mostly converted into heat energy and
cannot be retreived again as mechanical work.)

The presentation of the strain energy density follows the same format as described for the Strain table.

Table 7: Strain Energy Density
--
m: ALL
Material ID: ALL
..
average 2.091E-01
std_dev 3.039E-01
minimum 5.704E-15
maximum 2.186E+01
skewness 4.357E+00
kurtosis 9.588E+01
median 8.209E-02
perc05 4.649E-04
perc25 1.149E-02
perc75 2.918E-01
perc95 8.012E-01
--
m: 1
Material ID: 100
..
average 9.484E-02
std_dev 2.108E-01
minimum 5.704E-15
maximum 1.662E+01
skewness 7.458E+00
kurtosis 1.533E+02
median 1.993E-02
--
m: 2
Material ID: 127
..
average 3.264E-01
std_dev 3.382E-01
minimum 1.353E-12
maximum 2.186E+01

Faim Finite Element Analysis Manual 56 / 206

skewness 3.914E+00
kurtosis 9.946E+01
median 2.203E-01

6.3.2.8 Von Mises Stress

Statistics on the von Mises stress are reported. See VonMisesStress in Section 9.5 for a definition of the von Mises stress.

The presentation of the von Mises stress follows the same format as for the Strain table.

Table 8: Von Mises Stress
--
m: ALL
Material ID: ALL
..
average 3.920E+01
std_dev 3.147E+01
minimum 9.139E-06
maximum 4.915E+02
skewness 8.934E-01
kurtosis 5.365E-01
median 3.204E+01
perc05 2.624E+00
perc25 1.251E+01
perc75 5.944E+01
perc95 9.817E+01
--
m: 1
Material ID: 100
..
average 2.455E+01
std_dev 2.461E+01
minimum 9.139E-06
maximum 4.237E+02
skewness 1.832E+00
kurtosis 4.876E+00
median 1.643E+01
--
m: 2
Material ID: 127
..
average 5.423E+01
std_dev 3.065E+01
minimum 1.460E-04
maximum 4.915E+02
skewness 4.575E-01
kurtosis 1.077E-01
median 5.081E+01

6.3.2.9 Nodal Displacements

The three components of displacements (ux, uy, uz) are reported. A sub-table is generated for each post-processing node set.
Statistics of the displacements are reported over all the nodes of each set.

Units are self-consistent, but are typically millimeters (mm). See A note about units.

Table 9: Nodal Displacements
--
Node set: 1
Name: face_z1

Faim Finite Element Analysis Manual 57 / 206

..
ux uy uz

average 0.000E+00 0.000E+00 8.493E-03
std_dev 0.000E+00 0.000E+00 3.727E-02
minimum 0.000E+00 0.000E+00 -6.689E-02
maximum 0.000E+00 0.000E+00 7.695E-02
median 0.000E+00 0.000E+00 7.534E-03
--
Node set: 2
Name: face_z0
..

ux uy uz
average 0.000E+00 0.000E+00 8.176E-03
std_dev 0.000E+00 0.000E+00 5.033E-02
minimum 0.000E+00 0.000E+00 -8.768E-02
maximum 0.000E+00 0.000E+00 1.392E-01
median 0.000E+00 0.000E+00 1.250E-02

6.3.2.10 Nodal Forces

The three components of force (Fx, Fy, Fz) are reported. A sub-table is generated for each post-processing element set. The
forces are provided giving statistical values over all elements in the set.

Units depend on inputs, but are typically Newtons (N). See A note about units.

Table 10: Nodal Forces
--
Node set: 1
Name: face_z1
..

Fx Fy Fz
total -8.767E+02 -3.222E+00 5.025E+02
average -3.373E-02 -1.240E-04 1.933E-02
std_dev 7.261E-02 3.936E-02 3.336E-01
minimum -8.420E-01 -3.484E-01 -2.614E+00
maximum 4.068E-01 6.302E-01 1.399E+00
median -2.464E-02 -4.476E-04 4.233E-03
--
Node set: 2
Name: face_z0
..

Fx Fy Fz
total 8.773E+02 3.162E+00 -5.032E+02
average 2.191E-02 7.898E-05 -1.257E-02
std_dev 7.203E-02 5.302E-02 2.423E-01
minimum -3.655E-01 -3.909E-01 -1.399E+00
maximum 4.889E-01 3.679E-01 1.196E+00
median 8.519E-04 -2.016E-03 3.913E-03

6.3.2.11 Nodal Twist

Similar to nodal displacements, statistics on the angular displacements for each node set are provided.

The angular displacements are defined as the projected angles between the vector to the initial location of the node and the vector
to the displaced location of the node. The vectors are projected onto a plane perpendicular to the specified axis. This is shown in
Figure 14, which defines ROTx. p is the initial position of the node, and p’ is the displaced position of the node, as calculated
by FE. These two vectors are projected onto the y-z plane, and the angle between them in this plane is defined as ROTx. ROTy
and ROTz are similarly defined. Angular displacements are relative to the center of rotation; this is shown as p0 in Figure 14.
See specifying a rotation center.

Faim Finite Element Analysis Manual 58 / 206

p0

x

z

y

p
p’

ROTx

Figure 6.1: Definition of projected angle ROTx.

Note
ROTx, ROTy, ROTz do not form a set of Euler angles.

Nodes that are within an exclusion radius (default value 10-6) of the rotation center are excluded from the calculation, as the
angular displacement of a node at the rotation center (initial or final position) is not defined.

Units are radians (rad).

Table 11: Nodal Twist
--
Twist measured relative to: 66.049 54.985 4.510
Exclusion radius: 1.0E-06
--
Node set: 1
Name: face_z1
..

ROTx ROTy ROTz
n 25991 25991 25991
average 5.978E-04 -3.252E-03 0.000E+00
std_dev 3.424E-03 2.180E-03 0.000E+00
minimum -8.422E-03 -6.893E-03 0.000E+00
maximum 7.567E-03 -6.411E-07 0.000E+00
median 6.324E-04 -3.274E-03 0.000E+00
--
Node set: 2
Name: face_z0
..

ROTx ROTy ROTz
n 40032 40032 40032
average -7.531E-04 4.147E-03 0.000E+00
std_dev 4.239E-03 2.363E-03 0.000E+00
minimum -1.014E-02 6.411E-07 0.000E+00
maximum 9.126E-03 8.099E-03 0.000E+00
median -3.388E-04 4.688E-03 0.000E+00

6.3.2.12 Nodal Torques

Similar to nodal twist, statistics on the the nodal torques for each node set are reported.

Faim Finite Element Analysis Manual 59 / 206

As with the nodal twist results, torques are calculated relative to a reference point. See specifying a rotation center.

Units depend on inputs, but are typically in newton-millimeters (Nmm). See Note about units.

Table 12: Nodal Torques
--
Torque measured relative to: 66.049 54.985 4.510
--
Node set: 1
Name: face_z1
..

Tx Ty Tz
total 1.094E+04 -3.683E+04 -1.796E+03
average 4.210E-01 -1.417E+00 -6.909E-02
std_dev 2.312E+00 1.847E+00 7.455E-01
minimum -5.420E+00 -2.341E+01 -9.929E+00
maximum 3.204E+01 1.070E-01 5.532E+00
median 2.183E-02 -6.439E-01 -2.549E-03
--
Node set: 2
Name: face_z0
..

Tx Ty Tz
total -1.094E+04 3.682E+04 1.796E+03
average -2.733E-01 9.198E-01 4.486E-02
std_dev 1.487E+00 1.466E+00 5.923E-01
minimum -1.111E+01 -3.944E+00 -3.920E+00
maximum 7.102E+00 1.176E+01 5.743E+00
median -4.530E-03 3.083E-01 -2.374E-03

6.3.2.13 Load Sharing

A calculation of the fraction of the load carried by each material ID is provided, based on the nodal forces in each associated
node set.

The portion of total load on the node set is reported for each material in terms of nodal forces (Fx, Fy, Fz). Nodal torques (Tx,
Ty, Tz) are also reported if a center of rotation is defined. See specifying a rotation center. The total forces and torques are also
reported, and it should be noted that are the same as reported in Nodal Forces and Nodal Torques

The method used to determine the loads carried by each material requires identifying the nodes belonging to each material. Since
material definitions are based on elements, some nodes are shared by more than one material. In these cases, the forces and
torques associated with the node are proportionally assigned to each material definition.

Table 13: Load Sharing
--
Torque measured relative to: 66.0487 54.9845 4.5100
--
Node set: 1
Name: face_z1
..

material Fx Fy Fz
100 -2.2735E+02 2.2343E+01 1.5989E+02 v1
127 -6.4936E+02 -2.5565E+01 3.4260E+02

---------- ---------- ---------- ----------
total -8.7671E+02 -3.2224E+00 5.0249E+02 v2

material Tx Ty Tz
100 1.3237E+03 -4.6310E+03 -5.3746E+02
127 9.6174E+03 -3.2197E+04 -1.2583E+03

---------- ---------- ---------- ----------
total 1.0941E+04 -3.6828E+04 -1.7958E+03

--

Faim Finite Element Analysis Manual 60 / 206

Node set: 2
Name: face_z0
..

material Fx Fy Fz
100 -8.0150E+01 1.3524E+02 -2.2235E+02
127 9.5741E+02 -1.3208E+02 -2.8086E+02

---------- ---------- ---------- ----------
total 8.7726E+02 3.1616E+00 -5.0321E+02

material Tx Ty Tz
100 -4.4656E+03 1.5580E+04 1.3600E+02
127 -6.4737E+03 2.1242E+04 1.6599E+03

---------- ---------- ---------- ----------
total -1.0939E+04 3.6823E+04 1.7959E+03

v1 Represents the total force attributed to material definition 127 (cortical bone in this model).v2 This result is the same as the total Fz in Nodal Forces.

6.4 Tabulating results from analysis files

The analysis file generated by n88postfaim is intended to be human-readable. If you run several similar models, it is common
to want to tabulate certain numerical results in spreadsheet format. It is possible, but tiresome, to open the analysis file for each
solved model individually and manually search for the desired numbers. To make this process more efficient, we provide the tool
n88tabulate. See Section 9.16. This tool extracts certain specified values from any number of analysis files and collates them into
a tabular format suitable for importing into a spreadsheet.

Faim Finite Element Analysis Manual 61 / 206

Chapter 7

Tutorials

This chapter presents a number of tutorials to help you learn the Faim finite element tools.

A zip file containing the data files used for the tutorials, as well as the tutorial scripts, can be downloaded from http://numerics88.com/-
downloads/ .

The first series of tutorials introduces the standard work flow for Faim, where standard models as generated by n88modelgenerator
are desired. These tutorials are:

1. An introductory tutorial: compressing a solid cube

2. Compression test of a radius bone slice

3. Bending test of a radius bone with an uneven surface

These are intended to be followed in order, as each one builds on the previous.

Following these introductory tutorials is a series dealing with more advanced topics.

There is a tutorial that introduces models with nonlinear elasto-plastic material properties.

1. Bending of a radius bone with elasto-plastic material properties.

Then there are a series of tutorials which present the building of custom models using vtkbone. This series is intended only
for those who find n88modelgenerator insufficiently flexible for their needs. The tutorials in this series are:

1. Compressing a cube revisited using vtkbone

2. Deflection of a cantilevered beam; adding custom boundary conditions and loads

3. A cantilevered beam with elastoplastic material properties

4. Advanced custom model tutorial: a screw pull-out test

5. Radius compression with transformed boundary conditions for longitudinal bone strength estimates

Finally, some additional examples are provided with the distribution. These are not described in the manual, but demonstrate
addition concepts or functionality.

http://numerics88.com/downloads/
http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 62 / 206

7.1 Introductory tutorial: Compressing a solid cube

We start with a very simple example, where we compress a uniform homogenous cube. This tutorial will demonstrate:

• How to use the standard test generator n88modelgenerator to generate a finite element model suitable for input to the
solver.

• How to solve the model.

• How to use ParaView to visualize the model and the solution.

• How to identify key values in the analysis file.

The data file is cube6x6x6.vti. It can be found in the data folder of the the tutorial zip file available for download from
http://numerics88.com/downloads/ . We recommend that you copy it to a temporary working directory for this tutorial.

You can examine this data file, which we will be using as input, with ParaView. To do this, open ParaView and select the menu
item File→ Open, and navigate to the location of cube6x6x6.vti. You will notice that after selecting the file and clicking
OK, nothing is displayed, although the file name now appears in the Pipeline Browser. This is typical for ParaView, and allows
options relevant to the source to be modified before the data is actually loaded. In this case, there are no options we are concerned
with, so we can go ahead and click Apply (on the Properties tab of the Pipeline browser) to actually load the data. At first, only
a wire-frame cube will be displayed, which shows the extents of the image data. To actually inspect the data, we are going to
change the drop-down list on the toolbar that currently displays Outline to Points. This results in a display of a number of points
in space, as shown in Figure 15.

Figure 7.1: Points view of 6x6x6 cube.

If you’re alert, you’ll notice that in fact there are 7×7×7 points. This is due to the fact that the actual data for this data file is
associated with the Cells, to use VTK terminology, rather than the Points. The points shown are therefore in this case the corners
of the cells. To make this clear, change the view again from Points to Surface with Edges. This will now look like Figure 16.
(Click and drag in the image window of ParaView to rotate the object - experiment with both the right and left mouse buttons,

http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 63 / 206

and also while holding down any of the Shift, Control and Alt keys). We are going to create a finite element model where every
Cell, or small constituent cube from Figure 16 will become one element in the finite element model.

Figure 7.2: Surface with edges view of 6x6x6 cube.

For a simulated test, we are going to apply a compression test using n88modelgenerator to this data file. There are a number
of different standard compression tests, as described in Standard Tests. Here we are going to use the axial variation. In an axial
compression test, the sides are unconstrained and the top and bottom surfaces constrained laterally, as if they experience a high
contact friction with the imaginary surfaces applying the compression.

7.1.1 Generating the model

The first step is to open a Terminal (on Windows a Command Prompt or PowerShell). Make sure both that the Faim is on the Path,
as described in Section 1.4.2, and also that you have activated the Anaconda python environment for n88tools, as described
in Section 1.4.4.

Important
If you close the terminal part way through this tutorial, and then pick it up again later by opening a new terminal, you
will have to re-set the environment variables and re-activate the conda environment.

Assuming that you have copied the data file cube6x6x6.vti to your current working directory, the command to generate the
model is

n88modelgenerator --test=axial cube6x6x6.vti

Since we haven’t specified otherwise, n88modelgenerator will select all default parameters, including default material
properties (homogeneous material with isotropic Young’s modulus of 6829 MPa and Poisson’s ratio 0.3), and a displacement,

Faim Finite Element Analysis Manual 64 / 206

applied to the top surface in the z direction, numerically equivalent to an apparent level strain of -0.01 (the minus indicates
compressive strain). Refer to the section on n88modelgenerator for details on setting parameters differently if you wish to do so.

Here is the output when we run it:

n88modelgenerator Version 9.0
Copyright (c) 2010-2020, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91

input_file = cube6x6x6.vti
output_file = cube6x6x6_axial.n88model
connectivity_filter = on
test = axial
test_axis = z
normal_strain = -0.01
top_surface = intersection
bottom_surface = intersection
material_table = homogeneous
youngs_modulus = 6829
poissons_ratio = 0.3

0.00 Reading input data.
0.02 Read 343 points.
0.02 Image bounds:

0.0000 6.0000 0.0000 6.0000 0.0000 6.0000
0.02 Applying connectivity filter.
0.02 Masked out 0 unconnected voxels.
0.02 Converting to hexahedral mesh.
0.02 Generated 216 hexahedrons.
0.02 Constructing material table.
0.02 Material table has 1 entry.
0.02 Constructing finite element model.
0.02 Model bounds:

0.0000 6.0000 0.0000 6.0000 0.0000 6.0000
0.02 Generated the following constraints:

bottom_fixed : 147 nodes
top_fixed : 98 nodes
top_displacement : 49 nodes

0.02 Writing Numerics88 Model file cube6x6x6_axial.n88model .
0.03 Done.

We now have a file cube6x6x6_axial.n88model that can be used directly as input to the solver.

7.1.2 Solving the model

Having now defined the problem, we can solve it, and do some post-processing, all in one step with faim.

faim cube6x6x6_axial.n88model

The output is:

Model has 216 elements.
Model contains only linear material definitions.

Choosing n88solver_slt.
Running solver: n88solver_slt cube6x6x6_axial.n88model
n88solver_slt version 9.0
Copyright (c) 2010-2020, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91
Problem:

active solution = (none)

Faim Finite Element Analysis Manual 65 / 206

active problem = Problem1
number of elements = 216
number of nodes = 343

Solver engine:
engine = mt
precision = double
threads = 1

Convergence parameters:
convergence measure = set
convergence tolerance = 1e-06
convergence window = 16
maximum iterations = 30000

time (s) iter conv
0.0 30 5.4E-07

Convergence measure tolerance reached.
Number of linear iterations = 30
Peak data allocation : 75.8 kiB

Running field calculator: n88derivedfields cube6x6x6_axial.n88model
n88derivedfields version 9.0
Copyright (c) 2010-2020, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91
Problem:

active solution = Solution1
active problem = Problem1
number of elements = 216
number of nodes = 343

Solver engine:
precision = single

Peak data allocation: 19.8 kiB

Running analysis tool: n88postfaim --output_file cube6x6x6_axial_analysis.txt ←↩
cube6x6x6_axial.n88model

7.1.3 Visualizing the results with ParaView

First ensure that ParaView is set up with the plugins to read Numerics88 files, as described in Installing and using the Numerics88
plugins for ParaView. Assuming that the plugins are loaded correctly, cube6x6x6_axial.n88model can be opened directly
with ParaView. When we first open this file, it looks very similar to the input data. However, if we go to the Information tab
in the Pipeline Browser, we can see that there are now several Data Arrays, Displacement, ReactionForce, etc. . . as shown in
Figure 17. Notice that the icon next the the array name indicates whether the data is on Points or Cells, which is equivalent in
finite element terminology to Nodes and Elements, respectively.

Faim Finite Element Analysis Manual 66 / 206

Figure 7.3: Solved 6x6x6 cube with Data Arrays.

There are many ways to visualize the data. As a simple example, choose Displacement from the drop-down menu on the toolbar
that currently shows _MaterialID. Also click the Toggle Color Legend Visibility button on the toolbar (on the very left side).
ParaView should now look like Figure 18. Notice that a new drop-down box appears that shows Magnitude. This occurs because
the Displacements are a vector quantity. Experiment with changing this to Z, X and Y.

Faim Finite Element Analysis Manual 67 / 206

Figure 7.4: Solved 6x6x6 cube colored by Displacement.

Although we now have the cube colored by Displacement, the object is shown in its undeformed unloaded shape. To visualize
the deformations, we can use the Warp By Vector tool. There is an icon for this on the bottom Toolbar. Because we have imposed
a small strain, -0.01, it will be hard to see. The Warp By Vector tool however allows us to apply a Scale Factor. We will set
this to 10, so that the displacements are amplified by a factor of 10. The results are shown in Figure 19, where the compression
and outward bulging of the sides are clearly seen. In this figure, we have, in addition to applying the Warp By Vector tool,
re-enabled the display of the original cube6x6x6_axial.n88model, which was automatically disabled by ParaView when
we connected a filter object to it. We then set its display type to Outline, resulting in the white box outline in Figure 19, which
indicates the original undeformed box shape.

Faim Finite Element Analysis Manual 68 / 206

Figure 7.5: Solved 6x6x6 cube shown with exaggerated displacement using the Warp By Vector tool.

7.1.4 Obtaining numerical values from the analysis file

A typical result we want to obtain with a compression test is the object apparent stiffness. Numerically the stiffness is the net
external force divided by the displacement. We can find the displacement and force on the top surface from the analysis file,
cube6x6x6_axial_analysis.txt. This file is a text file, and can be opened with any text editor. Refer to the section on
post-processing with n88postfaim for the complete explanation of the values available.

The displacement is obtained from table Nodal Displacements. The displacements in this table are listed according to node set.

n88modelgenerator has defined some standard node sets (for a complete list see Creating node and element sets in the
chapter on Preparing Models with vtkbone.) Here the node sets that are relevant are the two surfaces to which the boundary
conditions are applied, namely the top and bottom surfaces, face_z1 and face_z0, respectively. The analysis file has been gen-
erated using these two node sets. If we examine the Nodal Displacements table of cube6x6x6x_axial_analysis.txt,
as shown in Figure 20, we see that the top node set has a uniform displacement in the z direction of -0.06 mm. The relevant
number is circled in red. Notice also that the minimum and maximum are the same so all nodes of this set are equally displaced,
as we expect, since this is in fact a boundary condition. The other node set is the nodes of the bottom surface, and it has constant
displacement of 0.

Faim Finite Element Analysis Manual 69 / 206

Figure 7.6: uz components in Nodal Displacements table of the analysis file.

Figure 7.7: Fz components in Nodal Forces table of the analysis file.

Similarly to the table for displacements, table Nodal Forces shows forces, summed over the defined node sets. Here the relevant
value is -2651 N, as shown in Figure 21. The apparent stiffness of the cube is therefore

−2651 N
−0.06 mm

= 4.42×105N/mm

Is this value reasonable? We can estimate what we should get. Completely ignoring lateral expansion and Poisson’s ratio, we

Faim Finite Element Analysis Manual 70 / 206

can do a quick estimate that the stiffness of a homogeneous cube should be approximately,

k =
EA
h

=
[6829 N/mm2][6 mm]2

[6mm]
= 4.10×105N/mm

This is close to what we obtained from the finite element model. The difference arises from the fact that the finite element model
takes account of the complicated lateral expansion (bulging of the sides) that occurs in an axial test, while our simple back-of-
the-envelope calculation assumes uniaxial conditions (i.e., no lateral constraint on the top and bottom boundary surfaces).

This concludes the cube tutorial. You have learned how to generate standard models from image data using n88modelgenerator,
how to solve the models, how to visualize the models using ParaView, and how to do some elementary post-processing analysis.

7.2 Tutorial: Compression test of a radius bone slice

In the previous tutorial, we saw how to generate a finite element model from an image file using n88modelgenerator, how to solve
it, how to visualize the results, and how obtain some relevant numerical results. In this tutorial, we are going to generate and
solve a similar compression test. Instead of a small contrived image, we will be using a real data file obtained from a microCT
scan of a distal radius bone. We will also provide more detail about the steps along the way, and be introduced to some of the
tools that aid in examining and verifying models.

In detail, this tutorial will demonstrate:

• How to use n88modelinfo to obtain information about n88model files, and in particular to trace back exactly how they were
generated and processed.

• How to examine the residuals to evaluate the accuracy of the solution.

• How to quantify the load sharing between the two types of bone, cortical bone and trabecular bone.

• How to compress data files using n88copymodel for efficient storage.

The data file is radius_slice82.aim, and it is obtained with the tutorial data available from http://numerics88.com/-
downloads/ . This is a large image file of 325×437×110 voxels in size. It was obtained with a scan resolution of 82 micrometers.
The tutorial will be demonstrated using this data file. However, a reduced-resolution file, radius_slice164.aim, is also
provided. The resolution has been reduced to an effective 164 micrometers, resulting in a much smaller data file with dimensions
163×219×55. If you are working on a computer with limited memory, or are just impatient, then you can follow along using the
smaller file.

Before proceeding, ensure that the Numerics88 plugins for ParaView are loaded as described in Section 1.4.5.

In the previous tutorial you might recall that the data file was a VTK image data file, and that it explicitly had the data on the
Cells rather than on the Points. Most image file formats make no such distinction, but ParaView always uses one or the other, as
it affects how the data are rendered. In fact if you experiment you will determine that certain filters will work in one case and not
the other, or that other filters will work differently depending on whether the data are on the Points or the Cells. As an example,
the Contour filter requires data on the Points, while the Threshold filter generally only gives the results you expect with the data
on the Cells. You will see when opening an AIM file that in the Properties tab we have a couple of options, which are Data on
Cells and Pad. This is shown in Figure 22. For this tutorial we want to select Data on Cells, which is the default.

http://numerics88.com/downloads/
http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 71 / 206

Figure 7.8: Options when opening an AIM file.

Once you’ve opened the file radius_slice82.aim (or radius_slice164.aim) and clicked Apply, locate the icon for
the Threshold filter on the toolbar. Change the Lower Threshold to 1 before clicking Apply, as shown in Figure 23; Scalars
should be set to AIMData.

Figure 7.9: The threshold filter.

Faim Finite Element Analysis Manual 72 / 206

Now change the Representation drop-down box to Surface and the Color by drop-down box to AIMData. Also turn on the legend
by clicking the Toggle Color Legend Visibility button. After rotating the image (click and drag in the image window) to get a
good viewing angle, this should look something like Figure 24. You can see that this data file has been segmented such that the
cortical bone has material ID 127 and the trabecular bone has material ID 100.

Figure 7.10: Input image for the radius slice tutorial.

7.2.1 Generating the model

As before, we recommend copying the data file radius_slice82.aim into a temporary working directory. The command
to generate the model is

n88modelgenerator --test=uniaxial radius_slice82.aim

The resulting model file will be named radius_slice82_uniaxial.n88model.

Note
Don’t forget that before running n88modelgenerator, make sure that Faim is on the Path, as described in Section 1.4.2,
and also that you have activated the Anaconda python environment for n88tools, as described in Section 1.4.4.

Before we solve it, we are going to examine this model file using n88modelinfo. You will find that n88modelinfo is a very useful
tool for getting information about the models, and for tracing back how they were created and solved. n88modelinfo can be run
like this,

n88modelinfo radius_slice82_uniaxial.n88model

n88modelinfo can generate quite a bit of output. We will shortly see how to reduce this to just the information that we are
interested in. For now though, let’s look at the complete output. Comments follow below the example output.

History:
--

Faim Finite Element Analysis Manual 73 / 206

2016-Sep-15 14:49:17 Model created by n88modelgenerator version 8.0
--

Log:
--
2016-Sep-15 14:49:17
n88modelgenerator Version 8.0
Copyright (c) 2010-2016, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91

input_file = radius_slice82.aim
output_file = radius_slice82_uniaxial.n88model
connectivity_filter = on
test = uniaxial
test_axis = z
normal_strain = -0.01
pin = off
top_surface = intersection
bottom_surface = intersection
material_table = homogeneous
youngs_modulus = 6829
poissons_ratio = 0.3

0.02 Reading input data.
0.05 Read 15849468 points.
0.05 Image bounds:

49.6920 76.3420 38.7040 74.5380 0.0000 9.0200
0.05 Applying connectivity filter.
0.66 Masked out 0 unconnected voxels.
0.66 Converting to hexahedral mesh.
1.56 Generated 2667590 hexahedrons.
1.56 Constructing material table.
1.86 Material table has 2 entries.
1.86 Constructing finite element model.
5.17 Model bounds:

50.1020 76.0960 39.1140 74.2100 0.0000 9.0200
5.17 Generated the following constraints:

bottom_fixed : 40032 nodes
top_displacement : 25991 nodes

--

Active Settings:
--

Active Solution : None
Active Problem : Problem1
Active Part : Part1

--

Materials:
--

Name : NewMaterial1
Type : LinearIsotropic
E : 6829.0
nu : 0.3

--

Parts:
--

Name : Part1

Faim Finite Element Analysis Manual 74 / 206

NumberOfNodes : 3816642
Hexahedrons :
NumberOfNodesPerElement : 8
NumberOfElements : 2667590

--

Constraints:
--

Name : bottom_fixed
Part : Part1
Type : NodeAxisDisplacement
NumberOfValues : 40032

Name : top_displacement
Part : Part1
Type : NodeAxisDisplacement
NumberOfValues : 25991

Name : convergence_set
Part : Part1
Type : NodeAxisForce
NumberOfValues : 25991

--

NodeSets:
--

Name : face_z0
Part : Part1
NumberOfNodes : 40032

Name : face_z1
Part : Part1
NumberOfNodes : 25991

Name : face_x0
Part : Part1
NumberOfNodes : 15

Name : face_x1
Part : Part1
NumberOfNodes : 14

Name : face_y0
Part : Part1
NumberOfNodes : 27

Name : face_y1
Part : Part1
NumberOfNodes : 17

--

ElementSets:
--

Name : face_z0
Part : Part1
NumberOfElements : 28999

Name : face_z1
Part : Part1

Faim Finite Element Analysis Manual 75 / 206

NumberOfElements : 21210

Name : face_x0
Part : Part1
NumberOfElements : 8

Name : face_x1
Part : Part1
NumberOfElements : 6

Name : face_y0
Part : Part1
NumberOfElements : 12

Name : face_y1
Part : Part1
NumberOfElements : 8

--

Problems:
--

Name : Problem1
Part : Part1
Constraints : bottom_fixed,top_displacement
ConvergenceSet : convergence_set
PostProcessingNodeSets : face_z1,face_z0
PostProcessingElementSets : face_z1,face_z0

--

Solutions:
--
--

Some things to note about the output of n88modelinfo:

• The History is a useful field to see what programs were run to generate or modify the file, and when.

• The Log field is similar to the History, except that it gives far more detailed information. Of particular note is that n88modelgenerator
reports its complete configuration, including all parameters values relevant to the particular test type, even ones which haven’t
been explicitly set, but are default values.

• This file hasn’t been solved yet, so there is nothing in Solutions.

• The sets defined for post-processing are face_z1 and face_z0, which are the top and bottom surfaces, respectively. We will
need this information later to interpret the results in the analysis file.

Now, as mentioned, that is a lot of output. Often we are interested in just part of the output. In this case, we can specify the bits
we want. For example, to get just the History and the Log, we could do this,

n88modelinfo --history --log radius_slice82_uniaxial.n88model

Tip
To discover what the valid arguments to n88modelinfo are, you can either refer to the manual (See Section 9.12), or you can
run n88modelinfo --help.

Faim Finite Element Analysis Manual 76 / 206

Tip
If you want the output of n88modelinfo to be saved in a file, then run it like this

n88modelinfo radius_slice82_uniaxial.n88model > info.txt

This will direct the output of n88modelinfo to the file info.txt.

7.2.2 Solving the model

From the previous tutorial, we know that we can use faim to solve the model and perform so post-processing on it. faim itself
actually just calls three other programs to carry out the actual work. Usually it’s easiest to call faim, but in this tutorial we are
going to call the individual processing programs ourselves, so we can understand what faim is doing.

The first step carried out by faim is to solve the model with n88solver_slt, which we can do with

n88solver_slt radius_slice82_uniaxial.n88model v1
v1 The specification slt for the solver means that this is the solver for small strain, linear problems, using a material table.

Tip
This model will take some time to solve. If you have licensed the GPU solvers, and have suitable hardware, then you probably
would like to jump right into using the GPU hardware. To do this, specify the engine and device. For example, for a system with
two compute-capable Nvidia cards, including the one being used for the display, the command would be:

n88solver_slt --engine=nv --device=0,1 radius_slice82_uniaxial.n88model

If you have a system where the compute GPUs are distinct from the video card used for the display, such as is typical for Nvidia
Tesla hardware, then the correct device option for two compute-capable Nvidia cards is more likely to be --device=1,2 .

We can see how this has modified the n88model file by running n88modelinfo again. To avoid the lengthy complete output,
here we use arguments that show only the sections that have in fact changed

n88modelinfo --history --log --solutions radius_slice82_uniaxial.n88model

The output is:

History:
--
2016-Sep-15 14:49:17 Model created by n88modelgenerator version 8.0
2016-Sep-15 15:22:54 Solved by n88solver_slt 8.0
--

Log:
--
2016-Sep-15 14:49:17
n88modelgenerator Version 8.0
Copyright (c) 2010-2016, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91

input_file = radius_slice82.aim
output_file = radius_slice82_uniaxial.n88model
connectivity_filter = on
test = uniaxial
test_axis = z
normal_strain = -0.01
pin = off
top_surface = intersection

Faim Finite Element Analysis Manual 77 / 206

bottom_surface = intersection
material_table = homogeneous
youngs_modulus = 6829
poissons_ratio = 0.3

0.02 Reading input data.
0.05 Read 15849468 points.
0.05 Image bounds:

49.6920 76.3420 38.7040 74.5380 0.0000 9.0200
0.05 Applying connectivity filter.
0.66 Masked out 0 unconnected voxels.
0.66 Converting to hexahedral mesh.
1.56 Generated 2667590 hexahedrons.
1.56 Constructing material table.
1.86 Material table has 2 entries.
1.86 Constructing finite element model.
5.17 Model bounds:

50.1020 76.0960 39.1140 74.2100 0.0000 9.0200
5.17 Generated the following constraints:

bottom_fixed : 40032 nodes
top_displacement : 25991 nodes

2016-Sep-15 15:22:54
n88solver_slt version 8.0
Copyright (c) 2010-2015, Numerics88 Solutions Ltd.
Licensed to Numerics88 Solutions Ltd.; lic. no. 91
Problem:

active solution = (none)
active problem = Problem1
number of elements = 2667590
number of nodes = 3816642

Solver engine:
engine = nv
precision = double
devices = 0

Convergence parameters:
convergence measure = set
convergence tolerance = 1e-06
convergence window = 312
maximum iterations = 30000

Convergence measure tolerance reached.
Number of linear iterations = 2761
Peak data allocation (system, device): 872 MiB, 692 MiB
--

Solutions:
--

Name : Solution1
Problem : Problem1
Variables defined on nodes:
Displacement

--

Note things are worth noting here. In the Log section, we now have a record of the complete configuration of the solver (in this
case, it happens to be default values). And in the Solutions section, we now have a solution (“Solution1”) with a field defined on
the nodes, namely Displacements.

Faim Finite Element Analysis Manual 78 / 206

7.2.3 Evaluating the accuracy of the solution

Faim includes a tool that can be used to evaluate the accuracy of the obtained solutions. This is discussed in the section Evaluating
solution quality. It can be run like this:

n88evaluate radius_slice82_uniaxial.n88model

Warning
The n88evaluate tool in its current implementation requires far more memory than the solver itself does. For this
example, it will use almost 60GB of memory, while the solver needed less than 2GB. Therefore, currently, you should
not attempt to run this part of the tutorial on a machine with less than 64GB of RAM .

The output is,

Analysis of solution displacements at boundary conditions:
max err : 0.00E+00
rms err : 0.00E+00

Analysis of forces (residuals):
max err : 1.28E-05
rms err : 9.35E-07
max err/max force : 9.26E-06
rms err/max force : 6.79E-07

The meaning of these results is discussed in the section Evaluating solution quality; briefly we can take the number rms er-
r/max force as a measure of the relative error. Here it is 7×10-7, which is acceptably small.

7.2.4 Obtaining additional solution fields with n88derivedfields

So far our solution consists only of displacements. Many other values are of interest, for example strains and stresses. These are
calculated with n88derivedfields. It can be run very simply as,

n88derivedfields radius_slice82_uniaxial.n88model

Now let’s have a look at what’s in the model file, using again n88modelinfo,

n88modelinfo --history --solutions radius_slice82_uniaxial.n88model

The output is:

History:
--
2016-Sep-15 14:49:17 Model created by n88modelgenerator version 8.0
2016-Sep-15 15:22:54 Solved by n88solver_slt 8.0
2016-Sep-15 15:27:58 Processed by n88derivedfields 8.0
--

Solutions:
--

Name : Solution1
Problem : Problem1
Variables defined on nodes:
Displacement
ReactionForce

Variables defined on elements:
Strain

Faim Finite Element Analysis Manual 79 / 206

Stress
StrainEnergyDensity
VonMisesStress

--

We have a number of new solution fields (or variables). Some are defined on the nodes and some defined on the elements. For
details on these fields, see Section 9.5.

Important
Even if you are not interested in the numerical values of the fields added by n88derivedfields, they are required by
n88postfaim. Running the latter requires first running the former.

7.2.5 Using n88postfaim to generate the analysis file

The final step performed by faim is to call n88postfaim, which does post-processing analysis. In the previous tutorial we saw that
an analysis file was generated, which is a text file with a number of tables summarizing the numerical results. It is n88postfaim
that generates this text file. To run it on an n88model file that contains all the solution fields is once again straightforward in
most cases,

n88postfaim -o analysis.txt radius_slice82_uniaxial.n88model

Note that unlike the previous commands, for n88postfaim we actually have to specify an output file with -o analysis.txt.
(If we don’t, then the output will just be printed to the terminal.) The faim command, which combines n88solver_slt,
n88derivedfields, and n88postfaim, would have automatically generated the filename radius_slice82_uniax-
ial_analysis.txt in this case, but that is getting a little bit lengthy, so we’ll just use analysis.txt here.

7.2.6 Determining load sharing distribution with n88postfaim

We already saw some of the values in the analysis file in the previous tutorial. For this tutorial, we are going to have a look at
table Load Sharing, as shown in Figure 25. We see that this table breaks up the total load on each node set according to material
ID. In this case, we have material ID 127 being cortical bone, and material ID 100 being trabecular bone. Recall that the material
properties are not different; it is merely a different labelling. Here we will see the reason for doing this. Recall also that the sets
defined for post-processing are the top and the bottom surfaces. (If you’re not sure of this then the command n88modelinfo
--problems radius_slice82_uniaxial.n88model will show you.) Because of the alignment in the CT scanner,
in this case the top surface is proximal, and the bottom surface is distal. Referring to the values circled in red in Figure 25, we
conclude that on the proximal surface of this radius bone slice, the proportion of the load carried by the trabecular bone is (-806)
/ (-5199) = 15.5%, while on the distal surface of the slice the proportion of the load carried by the trabecular bone is (3637) /
(5199) = 70.0%.

Faim Finite Element Analysis Manual 80 / 206

Figure 7.11: Load Sharing table in analysis file.

7.2.7 Enabling compression for large model files

The n88model file format supports compression internally and transparently. An n88model which contains compressed data
can be read with every N88 tool just like any other n88model, without the need for the user to explicitly de-compress the data.
Compression is not used by default, because it does have an increased calculation overhead for reading and writing (particularly
for writing). However, once we are finished with processing the model, we typically want to keep the data around for archival
purposes. It is recommended to compress the n88model files for archiving. This can be done with the n88compress tool, as
follows,

n88compress radius_slice82_uniaxial.n88model

For this data file, enabling compression reduces its size from 438 MB to 226 MB, a reduction of 47%.

This ends the tutorial on a compression test on a radius bone slice. We were introduced to n88modelinfo, we solved a realistic
model, we looked at using the residuals to evaluate the quality of the solution, we saw how to do load distribution calculations,
and finally we learned how to enable compression to more efficiently store large n88model files.

7.3 Tutorial: Bending test of a radius bone with an uneven surface

In the previous two tutorials, we had input images where the object in the image intersected the top and bottom bounds of the
image, thus forming nice flat surfaces to which we could apply boundary conditions. This won’t always be the case. In this
tutorial we’ll look at an object with a very uneven surface.

In detail, this tutorial will demonstrate:

• How to use the uneven surface parameters of n88modelgenerator.

• How to use n88extractsets to examine our boundary conditions.

The data file is radius82.aim. As for the previous tutorial, there is also a reduced resolution version, radius164.aim.
This data is particularly large, with the unreduced version having a size of 400×350×1100, or 154 million voxels; the resulting
finite element model will have 14 million elements.

The input image is shown in Figure 26.

Faim Finite Element Analysis Manual 81 / 206

Figure 7.12: Radius bone image for bending test.

Tip
In this tutorial, we are no longer going to go into detail on how to load and render data in ParaView, as we did in the previous
two tutorials. If you’re curious about how we generated that image of the radius bone from the image file, these are the steps:

1. Open the radius82.aim, and before clicking Apply, deselect Data on Cells

2. Add a Contour filter. The default contour value (63.5) is fine.

3. In View Options, add a Headlight with value 0.06.

7.3.1 Generating the model with n88modelgenerator

We are going to apply a bending test, as described in Bending test. In order to identify the rough head of the bone as a boundary
surface, we use the option bottom_surface=visible. As it implies, it will select nodes that are visible from a certain point of view.
In this case, visible means “looking up from below” (effectively from an infinite distance, as parallel rays are used). Note that
the distal head of the bone is in the “bottom” of the image, that is at smaller values of z. With this option, you can imagine that
we might “see” parts of the object that are far away if they are not obscured by the foreground part of the image. We don’t want
these distant parts of the object to form part of our boundary set, so when we use the bottom_surface=visible option, we nearly
always want to set a depth limit as well using bottom_surface_maximum_depth. In this case a suitable limit is 15 (units are the

Faim Finite Element Analysis Manual 82 / 206

same as the image units, which are millimeters in this case). In general there may be a bit of experimentation to get the best depth
limit.

Since we have several parameters that we want to specify, it will be more convenient to create a configuration file for n88modelgenerator
than to specify them individually on the command line, as we have done previously. To do this, open a text editor, and create the
following file. Save it to your working directory as radius_bending_test.conf.

File: radius_bending_test.conf
#
A configuration file for the radius bending tutorial.

input_file = radius82.aim
test = bending
bottom_surface = visible
bottom_surface_maximum_depth = 15

Lines starting with # are comment lines: any line starting with # is ignored.

We can now run n88modelgenerator by specifying only the configuration file to use:

n88modelgenerator --config radius_bending_test.conf

Tip
Some text editors automatically add a .txt file extension. You can either subsequently rename the file, or just accept the .txt
ending and everywhere in this tutorial use the actual complete file name. Even more confusing can be that many operating
systems by default hide the file extension in the file browser, so that you may save a file as radius_bending_test.conf,
and the file browser in your operating system shows it with this name, but its complete name is actually radius_bending_-
test.conf.txt. The complete name must be specified to all Numerics88 tools.

7.3.2 Using n88extractsets to obtain and visualize boundary conditions

Because this is a non-trivial boundary set, we really want to visualize it to make sure it is reasonable and that it corresponds to
what we expect. The best way to do this is with the tool n88extractsets. This is the command to use:

n88extractsets --constraints radius82_bending.n88model

Here “--constraints” means both boundary conditions and applied loads. (We can leave off this option, but then we will get even
more output files which in the present case we are not interested in.)

The output looks like this:

Reading N88 Model file : radius82_bending.n88model
Writing constraint : radius82_bending_constraint_bottom_fixed.vtp
Writing constraint : radius82_bending_constraint_top_fixed.vtp
Writing constraint : radius82_bending_constraint_top_displacement.vtp
Writing constraint : radius82_bending_constraint_bottom_displacement.vtp

We see that four files are generated, one for each constraint. These are VTK “PolyData” files, which consist of a set of “Vertices”
(points), one for each node in the boundary condition set. n88modelgenerator has separated the “fixed” constraints, which are
degrees of freedom that are fixed at zero, and the “displacement” constraints, which are degrees of freedom that are fixed at some
non-zero value. This distinction is sometimes useful, although the solver does not require it. In this case the nodes belonging to
the constraint or boundary condition have x and y fixed at zero, and z at non-zero values. Thus the “fixed” and “displacement” sets
will consist of the same set of nodes, but with different senses and values. We are going to open the file radius82_bending_-
constraint_bottom_displacement.vtp displacement and render it together with the contoured input image. This is
shown in Figure 27. Each individual node belonging to the boundary condition is shown as a blue dot.

Faim Finite Element Analysis Manual 83 / 206

Figure 7.13: Set of nodes on bottom boundary condition for radius bone bending test.

Tip
Generating this image is quite straightforward. We start with the contoured input image data, as above, then we also open the
file radius82_bending_constraint_bottom_displacement.vtp, and simply render it as “Solid Color”, setting
the color to blue.

This looks good so we can go ahead and solve this model with faim. Expect this to take a while - go grab a coffee.

faim radius82_bending.n88model

Tip
Just as in the previous model, if you have licensed the GPU solvers, and have suitable GPU hardware, then you are going to
want to use it. faim can take all the arguments that n88solver can so for example:

faim --engine=nv --device=0,1 radius82_bending.n88model

where as before the device list will depend on the number of GPUs in your system and their configuration .

As this is a very large file, once solved we should enable compression as in the previous tutorial. Compression can take a rather
long time on a file this large. Remember that it is never necessary to uncompress an n88model file before reading it.

n88compress radius82_bending.n88model

A comparison of the original input image with the solved model is shown in Figure 28. Here we have used a Warp By Vector
filter with a Scale Factor of 15 to make the distortion more evident to the eye.

Faim Finite Element Analysis Manual 84 / 206

Figure 7.14: Comparison of original input and solved model of bending radius bone, with 15 times displacement amplification.

Tip
Generating an attractive rendering of the solved model (or any n88model file) with ParaView takes a few additional steps. We
saw that with an input image, we could use the Contour filter to get a nice surface with curvature that reflects the light in ways
that give us visual clues about the shape of the object. An n88model file by contrast consists of a collection of cubic voxels,
each of which has flat surfaces (however small they may be), all oriented the same. A direct rendering of it therefore lacks the
visual lighting cues that we expect. With a few additional steps, we can convert it to a smooth surface with curvature. For Figure
28 we applied the following steps (to the result of the Warp By Vector filter):

1. Apply an Extract Surface filter. This converts the data from an Unstructured Grid (in this case a bunch of Hexahedrons)
to a surface consisting of Polygons.

2. Apply a Smooth filter with Number of Iterations set to 300.

Another useful way to render this data is coloured by von Mises stress. See VonMisesStress. This is shown in Figure 29.

Tip
You will want to manually set the scale of the coloring for von Mises stress, as the uneven contact surface has locally very high
stresses, which however are uninteresting (and even unphysical, as the microscopic contact surface irregularities would yield).
You can adjust the range by selecting Color Map Editor from the View menu, then click on the Rescale to Custom Range button
to the left of the color map plot.

Faim Finite Element Analysis Manual 85 / 206

Figure 7.15: Radius in bending test with coloring by von Mises stress

Showing the von Mises stress as in Figure 29 is informative, but only indicates the stress on the visible surfaces. Often we will
want to look at the stresses within the volume. One way to do this is with a Slice filter. This is shown in Figure 30. Without
going into a great deal of detail, you can see the filters used in this rendering in the Pipeline Browser.

Tip
The Slice filter should be used on volume data, and not on surface data. Notice that in Figure 29 we’ve applied the Slice filter
to the output of WarpByVector1, and not to ExtractSurface1 or anything derived from it.

Faim Finite Element Analysis Manual 86 / 206

Figure 7.16: von Mises stress on a slice of the radius in bending test

7.3.3 Numerical results

The interesting quantity in the analysis file radius82_bending_analysis.txt (see the section on post-processing with
n88postfaim) is the torque around the bending axis, which in this case is in the y direction. Refer to Figure 8. This quantity is
given as the total of Ty in the following table from radius82_bending_analysis.txt. By default, this is calculated
around the center of mass of the object, although you can re-run n88postfaim and specify an argument for the argument rotation_-
center if you want the torques calculated around an axis passing through a different point. Because the head of the bone is “down”
in the sense of smaller z, face_z0 is the head of the bone, and face_z1 is the cut face of the shaft. In any case, we can see
that the torques balance. The numerical value of the y compenent of the torque is 1997 N·mm (see A note about units), or 1.997
N·m.

==
Table 11: Nodal Torques

Torque measured relative to: 60.502 94.130 48.216

Node set: 1
Name: face_z1
..

Tx Ty Tz
total -1.213E+02 -1.997E+03 -1.928E+01
average -1.099E-02 -1.810E-01 -1.747E-03
std_dev 1.134E-01 1.252E-01 2.173E-02
minimum -6.034E-01 -5.249E-01 -9.884E-02
maximum 3.538E-01 4.623E-01 6.071E-02
median -8.431E-03 -1.915E-01 4.481E-05

Faim Finite Element Analysis Manual 87 / 206

Node set: 2
Name: face_z0
..

Tx Ty Tz
total 1.215E+02 1.996E+03 1.927E+01
average 1.601E-03 2.630E-02 2.538E-04
std_dev 1.591E+00 5.163E+00 9.762E-01
minimum -3.176E+01 -2.068E+01 -2.480E+01
maximum 2.722E+01 8.554E+01 2.405E+01
median -2.631E-02 -7.920E-01 -1.935E-02
==

7.4 Tutorial: Radius bending with elasto-plastic material properties

In this tutorial, we are going to repeat the radius bending test of the previous tutorial, but this time we will use nonlinear elasto-
plastic material properties. We recommend that you first read the section on Plasticity.

7.4.1 Creating the model

Because nonlinear models take substantially longer to solve than linear models, for this tutorial we are going to use the reduced-
resolution image file radius164.aim. However, if you have the processing power and the time to obtain solutions, and you
want to use the original resolution file radius82.aim, you can of course do so.

Creating a model with elasto-plastic material properties with n88modelgenerator is straight-forward: one simply has to set
the plasticity option. For example, the following configuration file is similar to the one in the last tutorial, but we have added
plasticity = vonmises,10. This means that we want a von Mises yield criterion (see von Mises yield criterion) with
a yield strength of 10 MPa. There is no scientific justification for choosing this numerical value for the yield strength: it was
chosen simply because it produces interesting results for this tutorial.

File: radius_bending_elastoplastic.conf
#
A configuration file for the tutorial: radius bending with
elasto-plastic material properties.

input_file = radius164.aim
output_file = radius_bending_elastoplastic.n88model
test = bending
bottom_surface = visible
bottom_surface_maximum_depth = 15
plasticity = vonmises,10

As before, we generate the model with

n88modelgenerator --config radius_bending_elastoplastic.conf

We can verify that the resulting model file has elasto-plastic material definitions using the handy n88modelinfo command,

n88modelinfo --materials radius_bending_elastoplastic.n88model

The output is

Materials:
--

Name : NewMaterial1
Type : VonMisesIsotropic
E : 6829.0

Faim Finite Element Analysis Manual 88 / 206

nu : 0.3
Y : 10.0

--

7.4.2 Solving the model

We can solve the model with faim,

faim radius_bending_elastoplastic.n88model

Tip
As before, if you have licensed the GPU solvers, and have suitable GPU hardware, then you are going to want to use the engine
and device options to obtain faster solutions.

Let us look into the file to see what fields are present for a solved elasto-plastic model. The command to list the solutions is, as
before,

n88modelinfo --solutions radius_bending_elastoplastic.n88model

this gives an output of

Solutions:
--

Name : Solution1
Problem : Problem1
Variables defined on nodes:
Displacement
ReactionForce

Variables defined on elements:
PlasticStrain
Strain
Stress
StrainEnergyDensity
VonMisesStress

Variables defined on gauss points:
PlasticStrain

--

Everything here is as before for linear solutions, with the addition of a new field PlasticStrain. PlasticStrain is the
irreversible strain that arises from exceeding the elastic limits as defined by the yield surface. See PlasticStrain in the section
Calculating additional solution fields with n88derivedfields. You may also note that variables defined on gauss points is a new
category. In essence, this is a higher accuracy version of variables defined on elements, and it is required for accurately processing
elastoplastic models.

7.4.3 Rendering yielded elements

We can use ParaView to open the solved model file radius_bending_elastoplastic.n88model. In Figure 33 we’ve
rendered the surface of the model such that unyielded elements are shown in grey, while yielded elements are shown in red. For
elasto-plastic materials, there is a clear distinction between elements that remain within the elastic limits and therefore have zero
plastic strain, and those which have exceeded the elastic limits and have non-zero plastic strain. (where non-zero means that
at least one of the 6 components xx, yy, zz, yz, zx and xy of the plastic strain is non-zero). In order to generate the rendering
of Figure 33 we set the Coloring to the Magnitude of PlasticStrain. You can find these in drop-down boxes in the toolbar in
ParaView, as shown in Figure 31. Next we will manually set a tiny range for the color scale, thus ensuring that practically every

Faim Finite Element Analysis Manual 89 / 206

element that is yielded is shown in fully saturated red. If we set a symmetric scale around zero, then unyielded elements, which
have a PlasticStrain magnitude of zero, will be drawn in a neutral gray. To set the color scale, click Rescale to Custom Data
Range, which is just to the left of the drop-down box for PlasticStrain, as shown in Figure 32. For this rendering I used a range
of -0.00001 to 0.00001 . Note that in Paraview, the Magnitude of the PlasticStrain is simply the square root of the sum of the
squares of the 6 components of plastic strain. This quantity has no physical interpretation, but it is useful for distinguishing
yielded and unyielded elements, as here.

Figure 7.17: Setting the color display to the Magnitude of PlasticStrain.

Figure 7.18: The Rescale to Custom Data Range button.

Faim Finite Element Analysis Manual 90 / 206

Figure 7.19: Bending radius test with elasto-plastic material properties. Yielded elements are shown in red.

What we observe in Figure 33 rendering is that there are essentially three regions of plastic deformation in this bone subject to a
bending force. They are,

• The uneven head of the bone. This region yields fundamentally because the deformation is applied here, and the surface is
rough. Rough surfaces yield easily in localised spots: crudely speaking, you don’t have to push very hard on a pointy little
protusion to bend it. This yielding is uninteresting, and if you were to slice the model here, you would find that the yielding is
superficial, that is, not very deep.

• On the inside surface of the bend, the bone yields in compression.

• On the outside surface of the bend, the bone yields in tension.

You can’t actually tell from Figure 33 what is yielding in compression and what in tension, but with a bit more manipulation, we
can generate an image that does show this. Since we know a priori that the tension and compression on the sides of the bone
shaft will be predominantly in the z direction, we can change the component of YieldStrain from Magnitude to ZZ. (You may
need to manually re-adjust the color scale, as ParaView will automatically rescale to the data range when you change the variable
for the color.) Elements yielded in compression now show as blue, as in Figure 34. We have in addition used a Slice filter, as in
the previous tutorial. This allows us to see that the yielded region is rather thick.

Faim Finite Element Analysis Manual 91 / 206

Figure 7.20: A slice through the radius. Yielded elements are shown in red for elements yielded in tension, and in blue for
elements yielded in compression.

7.4.4 Numerical results

In comparison with the linear case, the y component of the torque has dropped about 1.5%, from 1.997 N·m to 1.968 N·m; hence
a decrease in stiffness of 1.5%. In conclusion, this amount of plasticity has not significantly affected the results.

==
Table 12: Nodal Torques
--
Torque measured relative to: 60.546 94.150 48.216
--
Node set: 1
Name: face_z1
..

Tx Ty Tz
total -1.066E+02 -1.967E+03 -3.557E+01
average -3.555E-02 -6.560E-01 -1.186E-02
std_dev 4.106E-01 4.849E-01 7.938E-02
minimum -1.796E+00 -1.831E+00 -2.889E-01
maximum 1.024E+00 1.301E+00 1.671E-01
median -3.379E-02 -6.803E-01 -2.385E-03
--
Node set: 2
Name: face_z0
..

Tx Ty Tz
total 1.072E+02 1.968E+03 3.570E+01
average 5.497E-03 1.009E-01 1.831E-03
std_dev 2.888E+00 5.542E+00 1.195E+00

Faim Finite Element Analysis Manual 92 / 206

minimum -2.380E+01 -2.593E+01 -9.494E+00
maximum 2.158E+01 4.561E+01 1.482E+01
median -1.126E-01 -1.084E+00 1.470E-02
==

7.4.5 A more careful calculation: incrementally applying the load

There are always more subtle considerations for nonlinear calculations than for linear calculations. One aspect of elasto-plastic
calculations is that they exhibit hysteresis, or irreversible changes to strain. In this way, the solutions depend in fact, not only on
the current applied state, but in principle on the whole time-dependent history.

Whether this is significant or not in practice is something that can be investigated experimentally - or rather computationally in
our case. In the present case, we already know that there is only a 1.5% difference in numerical results between the linear model
and the elastoplastic model. So this more careful method of applying the load in the nonlinear case is very unlikely to result in
significant differences in the result. This tutorial is therefore more of a demonstration of principle, and an introduction to the
possibility of modifying already-solved n88model files.

To apply the bending in increments, we will take advantage of the fact that n88modelgenerator can accept an existing n88model
file as input. In this case, it will preserve the grid, i.e. the points and elements of the model, but generate new boundary conditions
and/or material definitions. Crucially, it also preserves an existing solution, which is then automatically used as the starting value
when the solver is subsequently called.

We are first going to make a configuration file containing all the parameters of n88modegenerator that are the same for each
increment of bending.

File: common.conf
#
A configuration file for the tutorial: radius bending with
elast-plastic material properties.
#
This file contains all the parameters that don’t change on
each increment of bending.

test = bending
bottom_surface = visible
bottom_surface_maximum_depth = 15
plasticity = vonmises,10

Now we are going to call n88modegenerator and faim multiple times, in steps of 0.1º, from bending angle 0.6º up to bending
angle 1.0º. 0.6º is chosen as a the starting angle because it happens to be just after the onset of nonlinear behaviour. In general,
it takes a bit of experimentation to find the minimum applied test condition for which some elements start to exceed the linear
region.

Here are the commands. You may want to put these into a script file.

n88modelgenerator --conf=common.conf --bending_angle=0.6 radius164.aim ←↩
incremental_bending_0.6.n88model

n88solver_spt incremental_bending_0.6.n88model
n88modelgenerator --conf=common.conf --bending_angle=0.7 incremental_bending_0.6.n88model ←↩

incremental_bending_0.7.n88model
n88solver_spt incremental_bending_0.7.n88model
n88modelgenerator --conf=common.conf --bending_angle=0.8 incremental_bending_0.7.n88model ←↩

incremental_bending_0.8.n88model
n88solver_spt incremental_bending_0.8.n88model
n88modelgenerator --conf=common.conf --bending_angle=0.9 incremental_bending_0.8.n88model ←↩

incremental_bending_0.9.n88model
n88solver_spt incremental_bending_0.9.n88model
n88modelgenerator --conf=common.conf --bending_angle=1.0 incremental_bending_0.9.n88model ←↩

incremental_bending_1.0.n88model
n88solver_spt incremental_bending_1.0.n88model

Faim Finite Element Analysis Manual 93 / 206

Once we have run all of these commands, we can verify that the final data file, incremental_bending_1.0.n88model,
does indeed show the history of being processed multiple times:

n88modelinfo --history incremental_bending_1.0.n88model

This gives an output of:

History:
--
2016-Sep-27 12:53:47 Model created by n88modelgenerator version 8.0
2016-Sep-27 13:09:03 Solved by n88solver_spt 8.0
2016-Sep-27 13:09:07 Model modified by n88modelgenerator version 8.0
2016-Sep-27 13:21:12 Solved by n88solver_spt 8.0
2016-Sep-27 13:21:16 Model modified by n88modelgenerator version 8.0
2016-Sep-27 13:33:43 Solved by n88solver_spt 8.0
2016-Sep-27 13:33:47 Model modified by n88modelgenerator version 8.0
2016-Sep-27 13:46:27 Solved by n88solver_spt 8.0
2016-Sep-27 13:46:31 Model modified by n88modelgenerator version 8.0
2016-Sep-27 14:03:09 Solved by n88solver_spt 8.0
--

As usual, the details can be recovered with the --log options of n88modelinfo, but the output is lengthy, so we will not show it
here.

To perform the post-processing on the final result, we call,

n88derivedfields incremental_bending_1.0.n88model
n88postfaim incremental_bending_1.0.n88model

Numerically, the results have changed little in this case, as expected. We now have a y-component of torque of 1.972 N·m, which
compares with 1.997 N·m in the linear case, and 1.968 N·m for the “all at once” elastoplastic case.

==
Table 12: Nodal Torques
--
Torque measured relative to: 60.546 94.150 48.216
--
Node set: 1
Name: face_z1
..

Tx Ty Tz
total -1.116E+02 -1.972E+03 -4.279E+01
average -3.723E-02 -6.579E-01 -1.427E-02
std_dev 4.146E-01 4.921E-01 7.945E-02
minimum -1.818E+00 -1.874E+00 -2.931E-01
maximum 9.960E-01 1.297E+00 1.614E-01
median -4.138E-02 -6.728E-01 -3.365E-03
--
Node set: 2
Name: face_z0
..

Tx Ty Tz
total 1.116E+02 1.972E+03 4.286E+01
average 5.721E-03 1.011E-01 2.197E-03
std_dev 3.191E+00 6.173E+00 1.345E+00
minimum -2.732E+01 -2.842E+01 -1.075E+01
maximum 2.276E+01 4.839E+01 1.579E+01
median -1.405E-01 -1.222E+00 2.123E-02
==

This tutorial is the final tutorial in the series presenting the Faim standard workflow, with models generated by n88modelgenerator.
Those interested in generating custom models will want to continue on to the tutorials presenting vtkbone. If you intend for
the moment to use only n88modelgenerator for generating your models, then you can stop here.

Faim Finite Element Analysis Manual 94 / 206

7.5 Tutorial: Compressing a cube revisited using vtkbone

In the preceding tutorials, we used n88modelgenerator to quickly generate finite element models from segmented 3D images.
n88modelgenerator has many parameters that can be used to tune the models in produces, but inevitably, the variety of models
that can be produced using the parameter-setting approach is limited. A far more flexible approach is scripting. Numerics88
contains a collection of objects suitable for constructing and manipulating finite element objects. These can be scripted with
Python. Python is one of the easiest languages to learn, and yet retains a great deal of expressive power. This collection of
objects is built on top of VTK and is referred to as vtkbone. It is documented in Chapter 3.

In this tutorial, we are going to revisit the first tutorial, Introductory tutorial: Compressing a solid cube. In fact we’re going
to do it all over again, only this time, we will generate the model by writing a little script with vtkbone, instead of using
n88modelgenerator. It will be more work, but we will have a working model-generation script that could be further tweaked to
do things that would not be possible with n88modelgenerator.

7.5.1 Getting familiar with Python, VTK and Numpy

It is not necessary to know Python in order to write and modify scripts using vtkbone, as very often you can make obvious
modifications to existing scripts. However, having a basic familiarity can make you more comfortable with the following script-
ing. As Python is very widely used, there are any number of excellent introductory books. A suggested place to start is the
on-line tutorial at http://docs.python.org/tutorial/ .

One feature of Python which we will use that is not a part of the standard Python distribution (but is distributed with Numerics88
software) is Numpy, which efficiently handles numerical arrays in Python. Again, prior knowledge of Numpy is not required,
but will help. Documentation for Numpy can be found at http://docs.scipy.org/doc/ . We recommend https://docs.scipy.org/doc/-
numpy-dev/user/quickstart.html as an introduction.

Finally, there is VTK . VTK is quite complex and rather more difficult to learn than either Python or Numpy, but fortunately it
is not necessary to know very much VTK. We will be using a mixture of custom vtkbone objects and standard VTK objects.
When one of these comes up in the following tutorials, you may want to have a glance at the corresponding API documentation
for that object. This is explained in Section 3.1.

7.5.2 Preliminaries: first lines of Python

First create a working directory. Using your favourite text editor, create a file apply_compression.py.

Tip
You can also use an editor or an integrated development environment specifically intended for python, such as IDLE, but this is
not necessary. A plain old text editor will work fine. On Windows, Notepad can be used. On OS X, you can use TextEdit, which
you will find in the Utilities folder within Applications. If using TextEdit, be sure to select Format→Make Plain Text. Atom is an
open-source text editor with a variety of tools for scripting in Python.

Note
If you want to cheat and not actually type this tutorial script line-by-line as we go, you can find the finished version in
the directory tutorials/cube_with_vtk, once you unpack the archive of tutorial data that can be downloaded from
http://numerics88.com/downloads .

Start by adding these lines, which import all the Python modules that we will be using:

from __future__ import division
import argparse
import os
import sys
import vtk
import vtkbone

http://vtk.org
http://docs.python.org/tutorial/
http://docs.scipy.org/doc/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://vtk.org
http://numerics88.com/downloads

Faim Finite Element Analysis Manual 95 / 206

Once you save this, you already have a script that you can run! In fact, you should run it, with just these lines in it - even though
it does nothing yet, because it will verify that Python can successfully locate VTK and vtkbone. The script can be run like this
(make sure you’ve saved apply_compression.py),

$ python apply_compression.py

Note
The dollar sign ($) at the beginning of the line is the prompt: don’t type that. On Windows the prompt will be something like
C:\> . On all systems the prompt might contain additional information, such as the current directory.

You should get as output . . . nothing whatsoever. If you get an error like “ImportError: No module named vtk”, then it is likely
that the n88tools is not installed, or that the anaconda python environment is not activated. Refer to Section 1.4.4.

We recommend also having a version number in your script. Increment it whenever you change the script (not every time you
add a line, but if you modify the finished script later so that the resulting model is somewhat different, then increment the version
number.) We’ll see soon how we can ensure that the script version number gets written into the log of the n88model file.
Although we’re not accountants, we highly recommend having an audit trail that will allow you to know exactly how a given
model was generated. (Obviously, you should archive copies of every version of your script, not just the most recent one. You
should also floss daily, which we’re sure that you do.) For now, just add a version number to the script with this line. We are on
version 3, since this tutorial has been in the manual for quite some time, and it has been tweaked a couple of times.

script_version = 4

Now, we’re going to want to specify the input image file on the command line, because this will allow us to use the script on any
input file, not just one hard-coded by name into the script. We’re also going to want to inform the user that an input file name is
required if they don’t supply one. (“The user” is most likely you yourself, but don’t assume that next week you’ll remember how
you intended to use the script you write this week.) The python module argparse is really handy for this. The following lines
will do the desired thing:

parser = argparse.ArgumentParser (
description="""Apply a compression test.

This script does essentially the same as the command
"n88modelgenerator --test=uniaxial"
but uses vtkbone for this purpose.
""")

parser.add_argument ("input_file",
help="An input image file of the segmented data; must be in VTK XML format (.vti).")

args = parser.parse_args()

So now when we run it as before, this time we do get some output:

$ python apply_compression.py
usage: apply_compression.py [-h] input_file
apply_compression.py: error: too few arguments

Progress!

Let’s see what happens if we run it with the -h flag. Note that argparse has automatically added a -h flag, the purpose of
which is to get help about the command.

$ python apply_compression.py -h
usage: apply_compression.py [-h] input_file

Apply a compression test. This script does essentially the same as the command
"n88modelgenerator --test=uniaxial" but uses vtkbone for this purpose.

positional arguments:

Faim Finite Element Analysis Manual 96 / 206

input_file An input image file of the segmented data; must be in VTK XML
format (.vti).

optional arguments:
-h, --help show this help message and exit

7.5.3 Reading the input file

The input file is cube6x6x6.vti and as usual you can find it in the data folder of your distribution. We’ve seen it before in
the first tutorial. Copy it to your working directory.

As the data is in VTK’s .vti format (properly referred to as “VTK XML Image Data file format”), we’ll need a vtkXMLIm-
ageDataReader object to read it. That will look like this:

print(f"Reading, {args.input_file}")
reader = vtk.vtkXMLImageDataReader()
reader.SetFileName(args.input_file)
reader.Update()
image = reader.GetOutput()

vtkXMLImageDataReader is a type of VTK “filter” (specifically a “source”). What we’ve done is very typical for VTK filters
and we’ll see this sequence of steps for employing a VTK filter over and over again. It is,

1. Create the filter object.

2. Set any inputs. (Here there are none, because a source doesn’t have any.)

3. Set any parameter values. In this case we set the parameter value FileName().

4. Call Update(). (Otherwise nothing happens and we wonder why.)

5. Get any output.

In fact, this isn’t the only way to use VTK filter objects, but it is the simplest and it is the procedure we will nearly always employ
in our scripts.

Let’s provide some feedback at this point so we have some indication that the data was correctly read. While we’re at it, let’s do
some error checking to stop things right here if that data wasn’t able to be read,

if not image:
print("No image data read.")
sys.exit(1)

print(f"Read image with point dimensions: {image.GetDimensions()}")

Now running it should result in,

$ python apply_compression.py cube6x6x6.vti
Reading cube6x6x6.vti
Read image with point dimensions (7, 7, 7) v1
v1 Wait a minute! Why are the reported dimensions (7, 7, 7) when they are really 6×6×6? It is because these are the reported

Point (or Node) dimensions, rather than the Cell (or Element) dimensions. If you’re confused, review the discussion on
this point in Introductory tutorial: Compressing a solid cube.

http://www.vtk.org/doc/release/6.3/html/classvtkXMLImageDataReader.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLImageDataReader.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLImageDataReader.html

Faim Finite Element Analysis Manual 97 / 206

7.5.4 Ensuring connectivity

We could assume that the input image is properly segmented and just proceed with generating a mesh. Since this is an introductory
tutorial perhaps we should. However, it happens not infrequently for whatever reason that a finite element model is attempted
on an image which does not consist of a single connected object. This can cause all sorts of trouble. Consider this: if there
are disconnected floating bits in the model, where is the proper place for the solver to put them in the solution? Sometimes
the solution of such models will be very slow, other times the model will solve OK, but some of the post-processing numbers
may appear strange if you don’t realize that they are calculated over the entire model, including bits which are subject to no
constraints.

So to avoid potential grief, this is a good place to drop in a vtkboneImageConnectivityFilter . It will strip away (actually zero-out)
any parts of the input image that aren’t in some way connected to the largest object in the image. It is a safe and prudent step in
the generation of a well-defined finite element model.

print("Applying connectivity filter.")
connectivity_filter = vtkbone.vtkboneImageConnectivityFilter()
connectivity_filter.SetExtractionModeToLargestRegion()
connectivity_filter.SetInputData(image)
connectivity_filter.Update();
image = connectivity_filter.GetOutput()

Tip
Is it legitimate to assign the output to the variable image when that was also the name of the input? The answer is yes. It’s
quite kosher in Python to clobber a variable name by assigning it to something else. Python is more clever than you might think
about this. It will in fact keep the data associated with the original input variable around as long required, even though we have
no means to refer to it or access it now. (And technically speaking, here it will be required, at least as long as connectivity_filter
exists, because connectivity_filter will still use the original input data. As long as connectivity_filter is around, we might decide
to use it again without changing the input, so Python won’t get rid of it.)

7.5.5 Generating a mesh

The filter object for generating an FE mesh from an input image is vtkboneImageToMesh . The FE mesh represents the geometry
of the model, and consists of elements and nodes (concretely, it will be an object of type vtkUnstructuredGrid). Note that in
VTK terminology, elements will be called Cells, and nodes will be called Points. Most of the time we don’t need to set any
parameters to vtkboneImageToMesh except the input.

Generate a finite element mesh from the input image

geometry_generator = vtkbone.vtkboneImageToMesh()
geometry_generator.SetInputData(image)
geometry_generator.Update()
geometry = geometry_generator.GetOutput()

print(f"Generated {geometry.GetNumberOfCells()} elements and {geometry.GetNumberOfPoints()} ←↩
nodes.")

Now our output is beginning to get interesting,

$ python apply_compression.py cube6x6x6.vti
Reading cube6x6x6.vti
Read image with point dimensions (7, 7, 7)
Applying connectivity filter.
Generated 216 elements and 343 nodes.

Quick check: 63 = 216 and 73 = 343, so we’re good.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageConnectivityFilter.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html

Faim Finite Element Analysis Manual 98 / 206

Tip
It is possible to write out the geometry to a file in VTK’s XML Unstructured Grid format using vtkXMLUnstructuredGridWriter .
You will then be able to open it in ParaView. It should be very similar to Figure 16. (In contrast though to rendering the input
image, if there were any zero-valued voxels, there would be no need to threshold to remove the corresponding cells, as they
are already absent from the meshed geometry.) The lines of code to save the geometry to a file are as follows:

writer = vtk.vtkXMLUnstructuredGridWriter()
geometry_file = "geometry.vtu"
print(f"Writing geometry to {geometry_file}")
writer.SetFileName(geometry_file)
writer.SetInputData(geometry)
writer.Write()

7.5.6 Defining materials and creating a material table

Now we need to define some material properties. We can do this by creating an instance of some specific derived class of
vtkboneMaterial . The one of these is vtkboneLinearIsotropicMaterial . Let’s make one of them,

print("Creating a linear isotropic material.")
material = vtkbone.vtkboneLinearIsotropicMaterial()
material.SetName("linear_iso_material") v1
material.SetYoungsModulus(6829) v2
material.SetPoissonsRatio(0.3) v3
v1 We can give it any name we want. If we need to access it later, we can look it up by name.v2 , v3 These are default values, so we actually didn’t really need these lines, but it doesn’t hurt be explicit, and now it is clear

how to set different values should you want to do so.

The other thing we must do is to make a material table, which associates the values in the input image (segmentation IDs or
material IDs) with defined materials. Our image file cube6x6x6.vti has the uniform value of 1 on every voxel, so we need
to make a material table that associates 1 with our material defined above. But perhaps we might want to run this script someday
on an input file that uses different values (127 is very common for historical reasons). We could write here some fancy scripting
that would examine the input data and produce a list of all the different values in the image, then map all those values to our
material (since we’re only using one material here). This sounds a bit complicated, but fortunately, there is a vtkbone object,
vtkboneGenerateHomogeneousMaterialTable , that does exactly this for us:

mt_generator = vtkbone.vtkboneGenerateHomogeneousMaterialTable()
mt_generator.SetMaterial(material)
mt_generator.SetMaterialIdList(image.GetCellData().GetScalars()) v1
mt_generator.Update()
material_table = mt_generator.GetOutput()
print(f"Generated material table with {material_table.GetNumberOfMaterials()} entries.")

v1 Unfortunately, it is not as simple as just setting “image” as the argument to SetMaterialIdList. We have to be quite
explicit about specifying the scalar data on the cells, in this manner.

7.5.7 Applying a compression test

To apply boundary conditions appropriate to a compression test, we can make use of the object vtkboneApplyCompressionTest
, which will do practically all the work for us. vtkboneApplyCompressionTest requires as inputs both the mesh and the material
table that we defined above.

http://www.vtk.org/doc/release/6.3/html/classvtkXMLUnstructuredGridWriter.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneLinearIsotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneGenerateHomogeneousMaterialTable.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html

Faim Finite Element Analysis Manual 99 / 206

Apply a compression test (uniaxial)

print("Applying a uniaxial compression test.")
generator = vtkbone.vtkboneApplyCompressionTest()
generator.SetInputData(0, geometry) v1
generator.SetInputData(1, material_table) v2
generator.Update()
model = generator.GetOutput()

v1 Input 0 to vtkboneApplyCompressionTest must be the mesh geometry, as a vtkUnstructuredGrid object.v2 Input 1 to vtkboneApplyCompressionTest must be the material table, as a vtkboneMaterialTable object.

7.5.8 Writing an n88model file

The output of vtkboneApplyCompressionTest is a vtkboneFiniteElementModel object, which is a complete representation of the
problem we want to solve with finite element analysis. It remains to write out this model in n88model file format.

Write an n88model file

output_file = os.path.splitext(args.input_file)[0] + "_custom.n88model" v1
Remove directory, so file ends up in current directory.
output_file = os.path.split(output_file)[1]

print(f"Writing n88model file: {output_file}")
writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(output_file)
writer.Update()

v1 This is some fancy Python to derive the output file name from the input file name.

That’s it. If everything works correctly, the output should look like this:

$ python apply_compression.py cube6x6x6.vti
Reading cube6x6x6.vti
Read image with point dimensions (7, 7, 7)
Applying connectivity filter.
Generated 216 elements and 343 nodes.
Creating a linear isotropic material.
Generated material table with 1 entries.
Applying a uniaxial compression test.
Writing n88model file: cube6x6x6_custom.n88model

7.5.9 Modifying the file history and log

We promised at the beginning to record the script version number in the file, and so far we haven’t done this. First we’ll have a
look at what is currently in the history field.

$ n88modelinfo --history cube6x6x6_custom.n88model
History:
--
2012-Sep-24 08:18:01 Model created by vtkboneApplyCompressionTest version 1.0 .
--

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMaterialTable.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 100 / 206

This is useful information so instead of replacing it, we can just add to it. To do this, add the following line to the script, just
before writing out the file:

model.AppendHistory(f"Created by cube_compression.py version {script_version}.")

Now run the script again, and this time when we run n88modelinfo, we get:

$ n88modelinfo --history cube6x6x6_custom.n88model
History:
--
2012-Sep-24 08:22:14 Model created by vtkboneApplyCompressionTest version 6.0 .
2012-Sep-24 08:22:14 Created by apply_compression.py version 2 .
--

Good, now we’ll always know that the cube6x6x6_custom.n88model file was created with version 2 of the script (which
called vtkboneApplyCompressionTest from vtkbone version 6.0).

We can also have a look at the log, which gives more detailed information:

$ n88modelinfo --log cube6x6x6_custom.n88model
Log:
--
2012-Sep-24 08:22:14
vtkboneApplyCompressionTest settings:

TopConstraintSpecificMaterial: -1
BottomConstraintSpecificMaterial: -1
UnevenTopSurface: 0
UnevenBottomSurface: 0
TestAxis: 2
AppliedStrain: -0.01
AppliedDisplacement: 0
TopSurfaceContactFriction: 0
BottomSurfaceContactFriction: 0
ConfineSides: 0
Pin: 0
PinCellClosestToXYCenter: 1
PinCellId: 0

--

There is already quite a lot of information here, provided automatically by vtkboneApplyCompressionTest . In particular we
have all the parameters of vtkboneApplyCompressionTest , which were all set to default values because we didn’t change any
of them. We could, if we wanted, add even more information to the log, using the method model.AppendLog, just as we
used model.AppendHistory. In this case, there is nothing lacking that we can’t query. For example, although no material
information appears in the log, we can determine it with n88modelinfo,

$ n88modelinfo --materials cube6x6x6_custom.n88model
Materials:
--

Name : linear_iso_material
Type : LinearIsotropic
E : 6829.0
nu : 0.3

--

You can now proceed if you want to solve and analyze the model exactly as in An introductory tutorial: compressing a solid
cube.

This completes the tutorial on building the 6×6×6 cube compression model using vtkbone. We’ve seen that it takes consider-
ably more work to write a script than to call n88modelgenerator, so whenever it suffices, it is preferable to use n88modelgenerator.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyCompressionTest.html

Faim Finite Element Analysis Manual 101 / 206

However, although in this case we’ve done nothing that n88modelgenerator couldn’t have done, we hope that you can imagine
that now that we have a script, that we could potentially modify it in any number of ways beyond what would be possible with
n88modelgenerator. In subsequent tutorials, we’ll explore these possibilities.

7.6 Tutorial: Deflection of a cantilevered beam; adding custom boundary condi-
tions and loads

In this tutorial, we are going to use vtkbone to create a model that is different than anything that could create with n88modelgenerator.
The test will be the deflection of a uniform beam fixed at one end, in other words a cantilever. We have chosen this model because
there is a simple analytic solution to which we can compare the result.

One aspect that will be new to this tutorial will be an applied force as part of the problem definition. Generally though, it is
preferable to define models with fixed position boundary conditions and solve for the forces, rather than to specify forces and
solve for a displacement. The reason for this will be discussed in the subsequent tutorial.

The completed script, create_cantilever.py, can be found in the cantilever subdirectory in the examples.

7.6.1 Importing the required python modules

As in the previous tutorial, we start the python script by importing the python modules that we will need. This time we will also
need the numpy module, as we are going to do some array manipulation.

from __future__ import division
import argparse
import numpy
from numpy.core import *

v1
import vtk
import vtkbone
from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk v2
v1 This just saves some typing later. For example we’ll be able to use the function array instead of the longer numpy.array.v2 These are the functions that allow us to convert numpy arrays to and from VTK data arrays.

As before, we’ll also set a script version number:

script_version = 3

7.6.2 Setting command line options

As before, we use the argparse module, which makes it quite simple to define a couple of arguments for running the script,
one of which, the applied force, will have a numerical value.

parser = argparse.ArgumentParser (
description="""Generate a model for a cantilever with an

applied force to the end of the beam.""")

parser.add_argument ("applied_force", type=float,
help="The applied force to the end of the beam.")

parser.add_argument ("output_file",
help="Name for output n88model file.")

args = parser.parse_args()

Faim Finite Element Analysis Manual 102 / 206

7.6.3 Generating the image data

The beam is going to have a very simple geometry, one which we generate algorithmically without too much trouble. This is
also going to serve as a brief introduction to numpy arrays. Because the analytic solution for the cantilever is essentially a 2D
problem, we are going to use just a beam width of just a single element. To scale up to a realistic width, if desired, one can just
scale all the forces. We are going to create a beam of 200×1×20 elements, with a cubic element of side length 0.5mm. Thus the
beam has dimensions of length 100mm, height 10mm, and width 0.5mm (but again, everything scales linearly with the width, so
the obtained solution can be used for arbitrary widths).

Here is how we create a 3-dimensional array data of size 200×1×20:

dims = array ((20, 1, 200)) v1
cellmap = ones (dims) v2
v1 The order of the dimensions is z,y,x, because numpy indices always are ordered with the “fastest-changing” index last,

which must be x. On the other hand, VTK will generally want arguments specified as x,y,z. We will have to be careful
about which order to use when.v2 ones is a numpy function that creates an array (in this case a 3-dimensional array) filled with 1s.

We need to convert this from a numpy array, which is natural to Python, to a VTK data array:

cellmap_vtk = numpy_to_vtk(ravel(cellmap), deep=1, array_type=vtk.VTK_INT)

There are a couple of subtle points here. The first is that VTK is actually going to want the flattened data, meaning as one long
1-dimensional array, rather than as a 3-dimensional array. (It will keep track of the dimensionality separately, as we will see
below.) Hence the use of ravel function, which is a numpy function that returns the input array as a one-dimensional array
(without copying the underlying data if possible). The other aspect to note is that we specify deep=1, which specifies that the
VTK array should create its own copy of the underlying data, instead of just referring to the numpy data. This is less memory
efficient, but there are potential pitfalls with sharing the data, so we’ll go with the more robust method of making a copy.

Now that we have the data, we’re going to create a vtkImageData object which adds information such as the dimensions and the
spacing.

image = vtk.vtkImageData()
image.SetDimensions(dims[::-1] + 1) v1
image.SetSpacing(0.5, 0.5, 0.5)
image.GetCellData().SetScalars(cellmap_vtk)

v1 This is a little bit tricky. First, dims[::-1] simply means “dims reversed”, which we need because, as discussed above,
dims is ordered z,y,x, but VTK requires x,y,z. Secondly we’re adding 1 (to every dimension) because vtkImageData
dimensions are always in terms of the number of Points, rather than the number of Cells. The end result is (201, 2, 21).

We’ve set the spacing to 0.5 . In this tutorial, we are going to use units of millimetres. Units are not specified in the n88model
file. Instead we will just have to ensure that all our units are consistent. See A note about units.

We can at this point write out the vtkImageData as a .vti file, and open it with ParaView to ensure that we have obtained the
desired result. It should ressemble Figure 35. As a beam, it looks absurdly thin, but to emphasise once again, we are solving
essentially a 2D problem; the numerical results obtained can be scaled to any beam width.

Optional: write out image data to examine it

print("Writing geometry file: beam_image.vti")
writer = vtk.vtkXMLImageDataWriter()
writer.SetInputData(image)
writer.SetFileName("beam_image.vti")
writer.Update()

http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html

Faim Finite Element Analysis Manual 103 / 206

Figure 7.21: Generated beam image.

7.6.4 Generating a base model without boundary conditions

Now that we have an image, as in the previous tutorial, we convert it to a geometric mesh:

Generate a geometrical mesh from the input image

mesh_generator = vtkbone.vtkboneImageToMesh()
mesh_generator.SetInputData(image)
mesh_generator.Update()
mesh = mesh_generator.GetOutput()

We also define a material (steel) and a material table.

Create a material

material = vtkbone.vtkboneLinearIsotropicMaterial()
material.SetName("steel")
material.SetYoungsModulus(2.0E5) v1
material.SetPoissonsRatio(0.3)

material_table = vtkbone.vtkboneMaterialTable()
material_table.AddMaterial (1, material) v2
v1 200GPa is a typical value for the Young’s modulus of steel. We will use units of MPa. We have already declared that our

length units are mm, hence all units will be consistent provided that we use Newtons for forces.v2 The value 1 comes from the fact that we filled our image with 1s. All the elements will now be mapped to the material
steel.

In contrast to the previous tutorial, we won’t be using one of the standard test generation filters. Rather we will use the base test
generation filter vtkboneApplyTestBase , which creates a vtkboneFiniteElementModel object without any boundary conditions.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 104 / 206

Create a model without boundary conditions.

generator = vtkbone.vtkboneApplyTestBase()
generator.SetInputData(0, mesh)
generator.SetInputData(1, material_table)
generator.Update()
model = generator.GetOutput()

Before we add displacement boundary conditions and applied loads, let’s save the model so we can examine the results as we
build up our script. Of course the model isn’t complete yet, but that doesn’t prevent us from saving and examining it.

Write an n88model file

print(f"Writing n88model file: {args.output_file}")
writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(args.output_file)
writer.Update()

Important
In everything that follows, it is intended that you add new lines to the script before the code (shown just above) that
saves the model to a file. Otherwise of course the saved file won’t include our additions and changes.

To run the script will require both a numerical value for the applied force and an output file name. For now use these values:

python create_cantilever.py -10 cantilever.n88model

We are choosing to use a negative applied force, because it is more natural to think of a downward force applied to a cantilever.

7.6.5 Adding fixed boundary conditions

We want to fix one end of our beam, to weld it to the (virtual) wall. Usually the step requiring the most work in defining boundary
condition is identifying the set of nodes that constitute the boundary surface we are interested in. In this case, vtkboneApplyTest-
Base has done the work for us, because although it doesn’t define any boundary conditions, it does define node (and element)
sets on all the faces. (To be more precise, it defines node and element sets consisting of any nodes/elements located at the x,y
and z extents of the model.) This is discussed in Creating node and element sets. The names of these sets are listed there, but if
you’ve run the script up to this point, you can also use n88modelinfo to query the set names:

$ n88modelinfo --node_sets cantilever.n88model
NodeSets:
--

Name : face_z0
Part : Part1
NumberOfNodes : 402

Name : face_z1
Part : Part1
NumberOfNodes : 402

Name : face_x0
Part : Part1
NumberOfNodes : 42

Name : face_x1

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html

Faim Finite Element Analysis Manual 105 / 206

Part : Part1
NumberOfNodes : 42

Name : face_y0
Part : Part1
NumberOfNodes : 4221

Name : face_y1
Part : Part1
NumberOfNodes : 4221

--

There are also corresponding element sets, which can be listed with the --element_sets option to n88modelinfo.

Node set face_x0 is the one to which we are interested in applying a fixed boundary condition. If you refer to the the API doc-
umentation for vtkboneFiniteElementModel, you will see that there are a number of methods for defining boundary conditions.
One possibility is to use the method FixNodes, which will fix the specified node set in all senses (directions). Only one line of
code would be required:

model.FixNodes ("face_x0", "fixed_beam_base") v1
v1 face_x0 is the name of an existing node set; fixed_beam_base is the name we are assigning to the new constraint.

However, as we are trying to obtain a result as close as possible to the analytic 2D solution, it is actually better to not limit the
freedom of motion in the y direction on the boundary condition. This way, no y direction forces will arise. Were there to be any
forces in the y direction, this would cause some essentially 3D effect on the x-z plane by the mechanism of Poisson’s ratio. So
instead of using FixNodes, we will use the following slightly more verbose code

Create the fixed boundary conditions at the base of the beam.
To obtain a more truely 2D result, no constraint is applied to
displacements in the _y_ direction.

model.ApplyBoundaryCondition(
"face_x0",
vtkbone.vtkboneConstraint.SENSE_X,
0,
"fixed_beam_base_x")

model.ApplyBoundaryCondition(
"face_x0",
vtkbone.vtkboneConstraint.SENSE_Z,
0,
"fixed_beam_base_z")

If you now run the script, you can then use n88modelinfo to verify that the boundary condition has indeed been generated:

$ n88modelinfo --constraints cantilever.n88model
Constraints:
--

Name : fixed_beam_base_x
Part : Part1
Type : NodeAxisDisplacement
NumberOfValues : 42

Name : fixed_beam_base_z
Part : Part1
Type : NodeAxisDisplacement
NumberOfValues : 42

--

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 106 / 206

7.6.6 Adding an applied load to tip of the beam

At the free end of the beam, we are going to apply a load. Creating an applied load is very similar to creating a displacement
boundary condition. vtkboneFiniteElementModel provides a number of methods for this purpose. There are some important
differences,

1. Applied loads are applied to element sets; displacement boundary conditions are applied to node sets.

2. Applied loads require the additional specification of a particular face of the elements to which to apply the load, or else
the specification that it is a body force. We are going to apply the load to the outward faces of the end elements (i.e. those
facing in the x direction).

Here is the code to create an applied load constraint, named end_force to the pre-defined element set face_x1. corresponding to
the end face of the beam.

Apply a force to the far end of the beam

model.ApplyLoad(
"face_x1", v1
vtkbone.vtkboneConstraint.FACE_X1_DISTRIBUTION, v2
vtkbone.vtkboneConstraint.SENSE_Z, v3
args.applied_force, v4
"end_force") v5

v1 This node set was created by vtkboneApplyTestBase . Here face_x1 means elements on the x1 face of the entire model.v2 This specifies the x1 faces of the elements.v3 This specifies the direction of the applied force. (The value of vtkbone.vtkboneConstraint.SENSE_Z is 2, but
the named constant conveys the intent more clearly than the numerical value.)v4 The applied force will be equally divided among the element faces in the set. Units, as discusssed above, are Newtons.v5 The name of the newly-created constraint.

7.6.7 Adding a convergence set

As discussed in Convergence measure there are different possibilites for the convergence measure, which is used by the solver
to determine when the solution has iterated enough to obtain an acceptable solution. Generally, the best convergence measure
to use for linear problems is convergence set. This convergence measure can only be used if we define a convergence set within
the model file. A convergence set is something that we choose, and we generally want to choose the quantity that we are most
interested in calculating. For example, for a cantilever, this quantity could be the displacement of the tip of the cantilever. You
might imagine that this would be difficult to specify. But in most cases, this quantity of interest is the complement of some
boundary condition or applied force. In this case, the displacement is the complement of the force applied to the tip. There is a
method to generate a convergence set from a boundary condition or from an applied force, and it is very simple to use:

Create a convergence set: the displacement of the tip

model.ConvergenceSetFromConstraint("end_force")

This method notices that the constraint named end_force, which we created previously, is an applied force, and that it is applied
to the faces of certain elements. It then constructs the compliment, which is the displacement, averaged over all nodes located
on those element faces. It is this average displacement of the tip that the solver will watch to determine when its value ceases to
change meaningfully. At that point the solver is finished.

Note
In this case we have passed an applied force to ConvergenceSetFromConstraint, and so the complement is naturally
the average displacement of the corresponding nodes. If instead you pass a boundary condition to ConvergenceSetFrom-
Constraint, then the resulting convergence set will be the total force on the nodes belonging to the specified boundary
condition.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html

Faim Finite Element Analysis Manual 107 / 206

Note
The fact the we define a convergence set in the model file does not limit us to choosing the convergence set convergence mea-
sure. Although the solver will default to using the convergence set convergence measure if it finds a convergence set defined
in the n88model file, we can always run the solver while specifying a different convergence measure, using the option con-
vergence_measure. Similarly, we can skip altogether defining a convergence set, and the solver will default to a convergence
measure that doesn’t require it. The only drawback is that the other convergence measures are necessarily more conservative,
and so the solver will usually run for more iterations than would be strictly necessary for the desired precision.

7.6.8 Specifying sets for post-processing

There is one more step required, and that is to identify the sets to be used for post-processing calculations by n88postfaim. We
are interested in values on the sets face_x0 and face_x1. The magic lines of code are:

Set the node sets and element sets that will be used for post-processing

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()
pp_elem_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_ELEMENT_SETS()
pp_node_sets_key.Append(info, "face_x0")
pp_elem_sets_key.Append(info, "face_x0")
pp_node_sets_key.Append(info, "face_x1")
pp_elem_sets_key.Append(info, "face_x1")

After running the script, we can verify that these post-processing sets are in fact specified in the n88model file:

$ n88modelinfo --problems cantilever.n88model
Problems:
--

Name : Problem1
Part : Part1
Constraints : fixed_beam_base_x,fixed_beam_base_z,end_force
ConvergenceSet : convergence_set
PostProcessingNodeSets : face_x0,face_x1
PostProcessingElementSets : face_x0,face_x1

--

Tip
It is possible to skip this step, and instead to specify later the node and element sets to be used by n88postfaim on the command
line of n88postfaim with the argument

--sets=face_x0,face_x1

7.6.9 Documenting the model in the file log

As discussed previously, it is good practice to document the model creation in both the file History and the file Log. Here we add
these lines (again they must come before the code that saves the model):

Update history and log

model.AppendHistory(f"Created by create_cantilever.py version {script_version} .")

model.AppendLog(
f"""create_cantilever.py
Cantilever beam model with applied force on far face edge of {args.applied_force} .

Faim Finite Element Analysis Manual 108 / 206

Using vtkbone version {vtkbone.vtkboneVersion.GetvtkboneVersion()} .
"""

)

If we run the script to generate the n88model file, we can at any later time get a brief description of the model and determine
what versions were used (including what version of vtkbone).

$ n88modelinfo --history --log cantilever.n88model
History:
--
2016-Sep-22 17:33:32 Created by create_cantilever.py version 3 .
--

Log:
--
2016-Sep-22 17:33:32
create_cantilever.py
Cantilever beam model with applied force on far face edge of -10.0 .
Using vtkbone version 1.0 .
--

7.6.10 Solving the problem and comparing with theory

The model is quickly solved with faim:

$ faim cantilever.n88model

If we open the solved file cantilever.n88model in ParaView, we can observe the beam deflection as shown in Figure 36.
Here the deflection is amplified by 10 so as to be more evident. The figure is colored by the xx component of strain, with red
being tensile and blue being compressive. This is easily done in ParaView, simply by selecting the relevant quantities from the
drop-down boxes in the toolbar, as in Figure 37.

Figure 7.22: Deflection of loaded cantilever beam. Displacement amplified by 10. Coloration by xx component of strain.

Figure 7.23: XX component of strain selected in ParaView toolbar.

Now let’s compare quantitatively with the analytical result for deflection of a cantilever beam as found in any Mechanics of
Solids textbook or on wikipedia at https://en.wikipedia.org/wiki/Deflection_%28engineering%29. We have that the deflection δ

https://en.wikipedia.org/wiki/Deflection_%28engineering%29

Faim Finite Element Analysis Manual 109 / 206

of the end of a cantilever beam is

δ =
FL3

3EI
where

F = force acting on the tip of the beam
L = length of the beam (span)
E = modulus of elasticity
I = area moment of inertia

For a beam with a rectangular cross-section b×h, the area moment of inertia is

I =
bh3

12

so that we have

δ =
4FL3

Ebh3 =
4(10N)(100mm)3

(2×105 MPa)(0.5mm)(10mm)3 = 0.4mm

You can observe this deflection in ParaView, and we can get a precise number by looking in the beam_analysis.txt file, in
the table Nodal Displacements. In this case the result, 0.4018, is very close to 0.4 .

Figure 7.24: Amount of deflection of the end face of the cantilever beam, as found in the analysis file.

This concludes the cantilever beam tutorial. We learned how to create custom models using vtkbone that are beyond the
standard types of models that n88modelgenerator can generate. We were also introduced to a new type of constraint, which was
the applied load.

7.7 Tutorial: A cantilevered beam with elastoplastic material properties

This tutorial uses the same model as the previous one, but now we will solve it using nonlinear elastoplastic material properties.

Faim Finite Element Analysis Manual 110 / 206

7.7.1 Analytic solution

The cantilever problem has a known analytic solution even in the case of nonlinear elastoplastic material properties. This solution
is due to Timoshenko and Gere (1997).

Before building and solving some models, we will consider the analytic solution, because it will indicate what range of test loads
are both interesting and reasonable, which is a non-trivial question for nonlinear problems.

The applied load at which the cantilever begins to yield, Fy, is

Fy =
σybh2

6L

where σy is the material yield strength (i.e. the value of uniaxial stress at which the material starts to yield), and all other symbols
are as in the previous section.

For our current model, for which we will use σy = 120 MPa, this evaluates to

Fy =
(120MPa)(0.5mm)(10mm)2

6(100mm)
= 10N

You will notice that this value corresponds (not entirely coincidently) with the applied force used for the linear case in the
previous section, for which we had calculated a deflection of 0.4 mm.

In the yielding region, the beam deflection is

δ

δy
=

(
Fy

F

)2
(

5−
(

3+
F
Fy

)√
3− 2F

Fy

)
This expression is only valid for 1 ≤ F / Fy ≤ 3/2; the cantilever will not withstand any force larger than this. For the current
model this range corresponds to between 10 N and 15 N.

7.7.2 Changes to the generation script

The model generation script is named create_cantilever_ep.py. It differs from the script in the previous tutorial,
create_cantilever.py, only in the definition of the material. This becomes

Create a material

material = vtkbone.vtkboneVonMisesIsotropicMaterial()
material.SetName("steel")
material.SetYoungsModulus(2.0E5) # units are MPa
material.SetPoissonsRatio(0.3)
material.SetYieldStrength(120) # units are MPa

For a von Mises elastoplastic material, we have exactly one new parameter as compared with a linear material, and that is the
yield strength, here set to 120 MPa. The exact parameters required depend on the material. For example a Mohr Coulomb
material would have two additional parameters, which are set with the method SetYieldStrengths(Y_tension,Y_-
compression). As always, for exact usage refer to the vtkbone API documentation (vtkboneVonMisesIsotropicMaterial
and vtkboneMohrCoulombIsotropicMaterial).

7.7.3 Generating the model and verifying the material

As in the linear case, we generate the model with

python create_cantilever_ep.py -14.5 cantilever_ep_145.n88model

And we can quickly verify that this model uses a von Mises material with

n88modelinfo --material cantilever_ep.n88model

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneVonMisesIsotropicMaterial.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneMohrCoulombIsotropicMaterial.html

Faim Finite Element Analysis Manual 111 / 206

The output is

Materials:
--

Name : steel
Type : VonMisesIsotropic
E : 200000.0
nu : 0.3
Y : 120.0

--

7.7.4 Solving the model

The cantilever is, for various reasons, a particularly difficult model for a finite element solver. When combined with nonlinear
material properties, in order to get the most accurate results, it is necessary to tighten the convergence tolerance. Thus for the
following results, we ran the solver as follows,

faim --convergence_tolerance=1E-9 cantilever_ep_145.n88model v1
Tip
Although this is a small model, elastoplastic models take considerably longer to run than linear models, so if you have a system
with a suitable GPU, make use of the option --engine=nv. On the other hand, such a small model is solved fastest all on
one GPU, even in a system with multiple available GPUs.

7.7.5 Plastic strain distribution

A solution with applied force of 14.5 N is shown in Figure 39. In comparison with the linear case of Figure 36, we see that the
strain is much more concentrated near the fixed end of the beam.

Figure 7.25: Deflection of loaded elastoplastic cantilever beam. Displacement amplified by 10. Coloration by xx component of
total strain.

7.7.6 Comparison of finite element and analytic results

By generating and solving models for various loads in the plastic range, we can generate table Table 7.1. To do this, first we
create a number of sequence of models

python create_cantilever_ep.py -10.0 cantilever_ep_100.n88model
python create_cantilever_ep.py -10.5 cantilever_ep_105.n88model
python create_cantilever_ep.py -11.0 cantilever_ep_110.n88model

Faim Finite Element Analysis Manual 112 / 206

python create_cantilever_ep.py -11.5 cantilever_ep_115.n88model
python create_cantilever_ep.py -12.0 cantilever_ep_120.n88model
python create_cantilever_ep.py -12.5 cantilever_ep_125.n88model
python create_cantilever_ep.py -13.0 cantilever_ep_130.n88model
python create_cantilever_ep.py -13.5 cantilever_ep_135.n88model
python create_cantilever_ep.py -14.0 cantilever_ep_140.n88model
python create_cantilever_ep.py -14.5 cantilever_ep_145.n88model
python create_cantilever_ep.py -15.0 cantilever_ep_150.n88model

You probably want to put all these commands in a script or batch file.

And then we solve them all

faim --convergence_tolerance=1E-9 cantilever_ep_100.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_105.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_110.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_115.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_120.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_125.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_130.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_135.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_140.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_145.n88model
faim --convergence_tolerance=1E-9 cantilever_ep_150.n88model

As we can see from the number of elements exceeding the plastic limit (the last column of the table), FAIM does indeed show
plastic onset at 10 N load. The data from table Table 7.1 are visualized in Figure 40. Agreement is very good until the onset of
beam failure approaches. Then there begins to be a some divergence between FAIM and the analytic results. Better agreement
can be obtained with a smaller element size, but fundamentally near the singularity of failure, there are very rapid changes in
plastic strain through the cross-section, and these cannot be well modelled by numerical discretisation. However, away from this
singularity, numerical results are good.

Tip
When running several models at different parameter points, it can become tedious to open each analysis file and search out
the relevant quantity. We can use the n88tabulate tool to save some effort. In the present case, after we have solved all the
models, the following command will generate the 4th column of the table (displacement as calculated by FAIM):

n88tabulate -V dz_avg_ns2 *_analysis.txt

The variable name for the desired quantity (here dz_avg_ns2) can either be found in the n88tabulate section of the manual,
or by referring to the on-line help from running n88tabulate with the -h flag.

Table 7.1: Elastoplastic cantilever results

load tip displacement yielded
linear analytic

elastoplastic
faim

elastoplastic
10.0 0.40 0.4000 0.4020 2
10.5 0.42 0.4201 0.4222 4
11.0 0.44 0.4406 0.4427 28
11.5 0.46 0.4621 0.4641 50
12.0 0.48 0.4852 0.4869 84
12.5 0.50 0.5107 0.5120 124
13.0 0.52 0.5397 0.5404 174
13.5 0.54 0.5745 0.5738 228
14.0 0.56 0.6188 0.6149 294
14.5 0.58 0.6835 0.6700 368
15.0 0.60 0.8889 0.7560 454

Faim Finite Element Analysis Manual 113 / 206

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

d
efl

ec
ti

o
n

(m
m

)

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

applied force (N)

linear

analytic elastoplastic

faim elastoplastic

Figure 7.26: Comparison of FAIM and analytic results for elastoplastic cantilever.

Tip
If you want, you can experiment with increasing the number of elements in the model (reducing the element size) to see how
this affects the result.

7.7.7 Incremental loading and hysteresis

Up to this point, we have solved a sequence of nonlinear models at different loads without giving a lot of thought about how
these loads are applied. In fact we have solved each load point "from scratch". From a theoretical point of view, it would be
better to start from the greatest load for which the model stays in the linear range, and then incrementally add small amounts of
load, obtaining a sequence of slowly changing nonlinear solutions, each of which is used as the starting point for the solver for
the subsequent load. This is discussed in Obtaining accurate nonlinear solutions by progressively applying loads. The question
is, does this actually matter? Here we will investigate this and discover that the answer is "it depends".

The first thing we need is a script to take an existing solved n88model file, and modify the applied force. You can find this script,
named modify_force.py, in the cantilever subdirectory of the examples. Since you are getting by now pretty good at
scripts, here are all the preliminaries, up to reading in an existing n88 model file:

from __future__ import division
import argparse
import vtk
import vtkbone

script_version = 1

parser = argparse.ArgumentParser (
description="""Take an existing cantilever model file, and modify the applied force

Faim Finite Element Analysis Manual 114 / 206

while leaving any existing solution unmodified. It can thus be used as the starting
value for a solution with the new applied force.""")

parser.add_argument ("input_file",
help="An existing cantilever model file.")

parser.add_argument ("applied_force", type=float,
help="The new applied force.")

parser.add_argument ("output_file",
help="Name for output file.")

args = parser.parse_args()

Read existing model (including possible solution)

print(f"Reading n88model file: {args.input_file}")
reader = vtkbone.vtkboneN88ModelReader()
reader.SetFileName (args.input_file)
reader.Update()
model = reader.GetOutput()

Now, we could modify the numerical values of the force constraint, but from a programming view, it is easier to just delete it and
re-create it.

Delete the old applied force.

model.GetConstraints().RemoveItem("end_force")

Apply the new force to the far end of the beam.

model.ApplyLoad(
"face_x1",
vtkbone.vtkboneConstraint.FACE_X1_DISTRIBUTION,
vtkbone.vtkboneConstraint.SENSE_Z,
args.applied_force,
"end_force")

That’s the meat of it. Now we just finish up with the usual entires to the history and the log, and write out the modified file.

Update history and log

model.AppendHistory(f"Modified modify_force.py version {script_version} .")

model.AppendLog(
"""modify_force.py
Changed applied force on far face edge to {args.applied_force} .
Using vtkbone version {vtkbone.vtkboneVersion.GetvtkboneVersion()} .
"""
)

Write an n88model file

print(f"Writing n88model file: {args.output_file}")
writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(args.output_file)
writer.Update()

Faim Finite Element Analysis Manual 115 / 206

Tip
Had we created the model with n88modelgenerator, it would have been even easier to change the load in the model file:
n88modelgenerator can take as an input an existing model file, and it will preserve any existing solutions while modifying the
material properties or constraints according to the command line arguments in the usual fashion.

Now to run this, we first create and solve a nonlinear model as we did above, with an applied force that we know, from the
previous analysis, is just at the limit of linear behaviour.

python create_cantilever_ep.py -10 cantilever_ep.n88model
faim --convergence_tolerance=1e-9 cantilever_ep.n88model

As previously, we can extract from the analysis file just the numerical value for the deflection, like this

n88tabulate -V dz_avg_ns2 cantilever_ep_analysis.txt

which returns -4.020E-01.

Now we use our modify_force.py script to increase to applied force to -10.5 .

python modify_force.py cantilever_ep.n88model -10.5 from_100_to_105.n88model

And we solve it and extract the new deflection.

faim --convergence_tolerance=1E-9 from_100_to_105.n88model

What we want to see, is that faim starts with the following two status lines:

Model contains elastoplastic material definitions.
Model contains existing solution.

And further on, once the solver solver_sp itself has been launched, we want to verify that we see the following status output:

Using existing solution as starting value.

Then, rinse and repeat until the desired final load is reached:

python modify_force.py from_100_to_105.n88model -11 from_105_to_110.n88model
faim --convergence_tolerance=1E-9 from_105_to_110.n88model
n88tabulate -V dz_avg_ns2 from_105_to_110_analysis.txt
python modify_force.py from_105_to_110.n88model -11.5 from_110_to_115.n88model
faim --convergence_tolerance=1E-9 from_110_to_115.n88model
n88tabulate -V dz_avg_ns2 from_110_to_115_analysis.txt

and so on . . .

We can thus add another column to Table 7.1, and compare the “all-at-once” nonlinear solutions with the incremental solutions.
Table 7.2 shows just these two columns. The results are practically indistinguishable. So can we therefore conclude that carefully
applying an incremental load is pointless extra work? Not quite. We are not at the end of the story yet. Let us take our solution
at a load of 14.5, and from there decrement the applied load back down to the linear region. Programmatically, this looks much
like before:

python modify_force.py from_140_to_145.n88model -14 from_145_to_140.n88model
faim --convergence_tolerance=1E-9 from_145_to_140.n88model
python modify_force.py from_145_to_140.n88model -13.5 from_140_to_135.n88model
faim --convergence_tolerance=1E-9 from_140_to_135.n88model

and so on . . .

We can tabulate all the deflections at once,

n88tabulate -V filename,dz_avg_ns2 *_analysis.txt

Faim Finite Element Analysis Manual 116 / 206

These additional load decreasing points are tabulated in Table 7.3. These are plotted together with the increasing load points up
to 14.5 in Figure 41. Now we see that that there is in fact a difference. Indeed we recognize the classic hysteresis curve. (Note
that compared with Figure 40, we have swapped the axes, just so that it looks more conventional.)

Faim Finite Element Analysis Manual 117 / 206

Table 7.2: Elastoplastic cantilever incremental results

load FAIM EP FAIM incr
10.0 0.4020 0.4020
10.5 0.4222 0.4222
11.0 0.4427 0.4427
11.5 0.4641 0.4641
12.0 0.4869 0.4870
12.5 0.5120 0.5120
13.0 0.5404 0.5405
13.5 0.5738 0.5738
14.0 0.6149 0.6150
14.5 0.6700 0.6700
15.0 0.7560 0.7560
15.5 0.9611 0.9611

Table 7.3: Elastoplastic cantilever results for decreasing loads

load FAIM decr
14.0 0.6499
13.5 0.6299
13.0 0.6098
12.5 0.5897
12.0 0.5696
11.5 0.5495
11.0 0.5294
10.5 0.5093
10.0 0.4892
0.0 0.0874

Faim Finite Element Analysis Manual 118 / 206

0

2

4

6

8

10

12

14

16

ap
p
li

ed
fo

rc
e

(N
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

deflection (mm)

Figure 7.27: Hysteresis exhibited by elastoplastic cantilever.

This concludes the tutorial on a cantilever with elastoplastic material properties. We learned how to use elastoplastic materials in
vtkbone scripts, and also how to apply loads in incremental steps to nonlinear models by modifying an existing n88model file.
By carefully applying incremental loading to the cantilever, we determined that results were essentailly unaffected as compared
with an “all at once” solution for the initial deflection of the beam, but that a residual deflection remains during the subsequent
unloading of the beam. This residual deflection, which is the hysteresis, can only be observed by applying the load incrementally.

7.8 Advanced custom model: A screw pull-out test

In the preceding tutorials we were introduced to using vtkbone to create original models that cannot be generated using
n88modelgenerator . We mentioned that frequently the most challenging part of creating such models is identifying the sets of
nodes and/or elements corresponding to the boundary conditions that we desire. In that tutorial, however, we didn’t actually need
to identify any such sets ourselves, as we found that the standard node and element sets as provided by vtkboneApplyTestBase
were suitable for our purposes. In this tutorial, by contrast, we will use some sophisticated criteria for identifying the desired sets
for boundary conditions. This includes,

• Identifying and characterizing features in the input image. Namely, we will determine the geometric location of a screw axis.

• Identifying nodes by spatial location (distance from the screw, as well as depth from the top surface).

• We will further reduce the selection of nodes based on visibility from a certain viewing angle, which is a useful technique for
locating nodes on an uneven surface.

In the course of this example, we will generate the files screwpullout.py and screwpullout.conf. You can find the
completed versions of these files in the examples/screwpullout directory of the distribution.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html

Faim Finite Element Analysis Manual 119 / 206

7.8.1 The model: a screw pull-out test

This example is a finite element model of an important mechanical test for orthopaedic biomechanics. This tutorial is based on
the work of Stadelmann et al (2012). Physical tests were done in which a volume of bone substitute was constrained with a ring
and the screw was pulled out. Here we construct a finite element model corresponding to this physical test.

The geometry of the model is in the file sawbone.aim in the data directory of the distribution. It consists of a volume of
bone substitute into which a screw has been embedded. This is shown in Figure 42. The data have been segmented such that
bone substitute is labelled with ID 127 (shown in beige), and the screw with ID 90 (shown in blue). The mechanical test is to
find the force required to pull out the screw.

Figure 7.28: Screw model segmented image

Important
The script will look for the data file sawbone.aim in whatever directory it is run from. On your distribution, the
example script and the data file are in different directories, examples/screwpullout and data respectively. We
recommend that you copy the files from both these directories to a temporary working directory for this tutorial.

Faim Finite Element Analysis Manual 120 / 206

7.8.2 Preliminaries: first lines of Python

Using your favourite text editor, create a file screwpullout.py.

By now you should be pretty familiar with importing the necessary Python modules:

from __future__ import division
import os
import sys
import time
import vtk
import vtkbone

As before, we’ll also set a script version number:

script_version = n v1
v1 , v1 A version of this script has been used as a tutorial in previous versions of Faim. In Faim 9.0 we are on the nth iteration of

this script.

Since generating a model from a large micro-CT scan can take a lot of time, it is convenient to print status messages as the script
proceeds, and to have these messages time stamped, so that we can see what steps potentially should be optimized (or where the
script fails). The following function will take one or more strings and print them out one per line, with a time stamp on the first,
and indenting the subsequent lines.

def message(msg, *additionalLines):
"""Print message with time stamp.

The first argument is printed with a time stamp.
Subsequent arguments are printed one to a line without a timestamp.
"""
print(f"{(time.time()-start_time):8.2f} {msg}")
for line in additionalLines:

print(" "*9 + line)

start_time = time.time()

7.8.3 Using a configuration file to store parameters

This model is going to be quite complicated. To keep things orderly, we will put all our parameters in a configuration file. The
configuration file is a record of exactly which parameters were used to generate a particular model. We’re going to write the
configuration file itself in Python code, so that we don’t have to write a file parser to read it. Here is what the configuration file
(screwpullout.conf) looks like:

Configuration file screwpullout.conf
#
This configuration file is in the format of python source code.
If you stick with simple assignments, then it looks like a typical
configuration file, and can probably be read with other file parsers,
if you wish to do so.

Input image file.
input_image_file = "sawbone.aim"

Output n88model file.
- take the input file name and change the extension to .n88model
n88model_file = os.path.splitext(input_image_file)[0] + ".n88model"

Faim Finite Element Analysis Manual 121 / 206

Bone material
bone_material_id = 127
bone_material_modulus = 6829.0 # 6829.0 MPa for bone
bone_material_poissons_ratio = 0.3

Screw material
screw_material_id = 90
screw_material_modulus = 69000.0 # 69 GPa for Aluminum
screw_material_poissons_ratio = 0.3

Displacement (in physical length units of the model) applied to the screw
surface.
screw_displacement = 0.01

Ring radii for finding nodes of bone material to which we will apply the
constrained ring.
inner_ring_radius = 4.5
outer_ring_radius = 7.0

Max depth for finding nodes of bone material to which we will apply the
constrained ring. The max is measured from the highest node of constrained
bone found.
bone_constraint_max_depth = 1.5

Now we add to our script the following:

1. A bit of code to get the configuration file name from the command line.

2. A few lines to execute the configuration file as Python code.

3. Some lines to print out all the values that we expected to read in. This is very good practice so when you run it, you can
verify that everything is as you expect.

All that looks like this:

if len(sys.argv) != 2:
print("Usage: python screwpullout.py example.conf")
sys.exit(1)

config_file = sys.argv[1]

Read in configuration file.
message("Reading configuration file " + config_file)
Here we are actually executing it as python code.
with open(config_file) as f:

code = compile(f.read(), config_file, ’exec’)
exec(code)

Print out values that we read in. This also has the effect of causing
this script to die if configuration values are missing (which is a good thing).
settings_text = ["Configuration:"]
settings_text.append("input file = %s" % input_image_file)
settings_text.append("output file = %s" % n88model_file)
settings_text.append("bone material id = %s" % bone_material_id)
settings_text.append("bone material Young’s modulus = %s" % bone_material_modulus)
settings_text.append("bone material Poisson’s ratio = %s" % bone_material_poissons_ratio)
settings_text.append("screw material id = %s" % screw_material_id)
settings_text.append("screw material Young’s modulus = %s" % screw_material_modulus)
settings_text.append("screw material Poisson’s ratio = %s" % screw_material_poissons_ratio ←↩

)
settings_text.append("screw displacement = %s" % screw_displacement)
settings_text.append("inner ring radius = %s" % inner_ring_radius)
settings_text.append("bone constraint max depth = %s" % bone_constraint_max_depth)

Faim Finite Element Analysis Manual 122 / 206

message(*settings_text)
v1

v1 This is slightly advanced python, where the asterisk means that we pass the list of N items (strings in this case) not as a
single list argument, but as N individual arguments. It just happens that given the way we wrote our message function,
this is the best thing to do here.

Now when we run our script, we also have to specify the name of the configuration file:

$ python screwpullout.py screwpullout.conf

7.8.4 Reading the segmented image file

We will use a vtkboneAIMReader to read the data file, which is in the Scanco AIM file format. This file contains a segmented
image. As well, we want to add some additional lines to report our progress, and print some values as a sanity check.

message("Reading input data.")
reader = vtkbone.vtkboneAIMReader()
reader.SetFileName(input_image_file)
reader.DataOnCellsOn() v1
reader.Update()
image = reader.GetOutput()
message("Read %d points from image file." % image.GetNumberOfPoints())
image_bounds = image.GetBounds() v2
message("Image bounds:", (" %.4f"*6) % image_bounds)

v1 As discussed in several previous tutorials, we can either have the image data on the Cells or the Points. vtkbone is
generally agnostic on this point, but it is good to be clear.v2 This is a standard VTK method for many types of VTK objects, returning an array of six values: xmin, xmax, ymin, ymax,
zmin, zmax.

The output so far, when we run the Python script, will look something like this:

$ python screwpullout.py screwpullout.conf
0.00 Reading configuration file screwpullout.conf
0.00 Configuration:

input file = sawbone.aim
output file = sawbone.n88model
bone material id = 127
bone material Young’s modulus = 6829.0
bone material Poisson’s ratio = 0.3
screw material id = 90
screw material Young’s modulus = 69000.0
screw material Poisson’s ratio = 0.3
screw displacement = 0.01
inner ring radius = 4.5
bone constraint max depth = 1.5

0.00 Reading input data.
0.07 Read 5775920 points from AIM file.
0.07 Image bounds:

11.9700 27.4740 11.7420 27.1320 0.1140 35.3400

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneAIMReader.html

Faim Finite Element Analysis Manual 123 / 206

7.8.5 Converting the image data to elements

As in the tutorial Compressing a cube revisited using vtkbone, we need to convert the input CT image data to a vtkUnstructured-
Grid object representing the geometry. Again, we will use a vtkboneImageToMesh filter for this purpose.

message("Converting to hexahedral cells.")
mesher = vtkbone.vtkboneImageToMesh()
mesher.SetInputData(image)
mesher.Update()
mesh = mesher.GetOutput()
message("Generated %d hexahedrons" % mesh.GetNumberOfCells())

7.8.6 Defining material properties

Once again, we repeat the steps of the tutorial Compressing a cube revisited using vtkbone, and we generate a material table and
two materials: bone and screw.

message ("Creating material table.")
material_table = vtkbone.vtkboneMaterialTable()

Create an isotropic material for bone and add it to the table.
bone_material = vtkbone.vtkboneLinearIsotropicMaterial()
bone_material.SetName("bone")
bone_material.SetYoungsModulus(bone_material_modulus)
bone_material.SetPoissonsRatio(bone_material_poissons_ratio)
material_table.AddMaterial(bone_material_id, bone_material)

Create an isotropic material for the screw and add it to the table.
screw_material = vtkbone.vtkboneLinearIsotropicMaterial()
screw_material.SetName("screw")
screw_material.SetYoungsModulus(screw_material_modulus)
screw_material.SetPoissonsRatio(screw_material_poissons_ratio)
material_table.AddMaterial(screw_material_id, screw_material)

7.8.7 Creating a vtkboneFiniteElementModel object

In the tutorial, Deflection of a cantilevered beam; adding custom boundary conditions and loads, we used vtkboneApplyTestBase
to combine the geometry with the model table into a vtkboneFiniteElementModel object. vtkboneApplyTestBase didn’t create
any displacement boundary conditions or applied loads for us, but it did define some standard sets that we subsequently used to
define our displacement boundary conditions and applied load. This time, those standard sets won’t we very useful for us. So
instead of vtkboneApplyTestBase , we’ll use an even more elementary model-creating filter called vtkboneFiniteElementModel-
Generator , which creates a vtkboneFiniteElementModel object without any pre-defined sets.

Tip
Actually, it is not quite true that we couldn’t use need any standard sets. The standard set “face_z1” would be the top surface of
the screw, which is one of the sets that we need. However, for the purposes of demonstration, we’ll show how to find that node
set manually.

message("Constructing a finite element model object.")
generator = vtkbone.vtkboneFiniteElementModelGenerator()
generator.SetInputData(0, mesh)
generator.SetInputData(1, material_table)
generator.Update()
model = generator.GetOutput()
model.ComputeBounds() v1
bounds = model.GetBounds()
message("Model bounds:", (" %.4f"*6) % bounds)

http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneImageToMesh.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneApplyTestBase.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 124 / 206

v1 Unlike vtkImageData objects, vtkUnstructuredGrid objects, from which vtkboneFiniteElementModel objects are derived,
don’t know their bounds unless you explicitly request them to be computed.

7.8.8 Writing an n88model file

Now that we have a vtkboneFiniteElementModel object, we can save it. Of course, the model isn’t finished yet, but just as in the
previous tutorial, we can still save it and examine it as we go.

message("Writing file %s" % n88model_file)
writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(n88model_file)
writer.Update()

Important
Once again, in everything that follows it is intended that you add new lines to the script before the code (show just
above) that saves the model to a file. Otherwise of course the saved n88model file won’t reflect our additions and
changes.

7.8.9 Adding history and log fields

By now you’ll be familiar with adding History and Log fields to help us later trace back the details of the creation of this model.
Let’s add all this information (before the code to save the file!):

model.AppendHistory("Created by screwpullout.py version %s ." % script_version)

model.AppendLog(
"""screwpullout.py
Model of screw being pulled out of bone substitute material.
Using VTKBONE version %s .
Configuration file : %s
""" % (vtkbone.vtkboneVersion.GetVTKBONEVersion(), config_file)
+ "\n".join(settings_text)) v1
v1 This looks a little bit complicated. "\n".join(settings_text)) converts the Python list of strings to a single

long string, inserting a line return ("\n") between each list item. We then just add it to the other string.

Now run the script. As a reminder, this is done with

$ python screwpullout.py screwpullout.conf

As shown in previous tutorials, we can retrieve the History and Log fields from the n88model file at any time with n88modelinfo:

$ n88modelinfo --history --log sawbone.n88model
History:
--
2016-Sep-27 16:12:21 Created by screwpullout.py version 8 .
--

Log:
--
2016-Sep-27 16:12:21
screwpullout.py
Model of screw being pulled out of bone substitute material.
Using vtkbone version 1.0 .

http://www.vtk.org/doc/release/6.3/html/classvtkImageData.html
http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 125 / 206

Configuration file : screwpullout.conf
Configuration:
input file = sawbone.aim
output file = sawbone.n88model
bone material id = 127
bone material Young’s modulus = 6829.0
bone material Poisson’s ratio = 0.3
screw material id = 90
screw material Young’s modulus = 69000.0
screw material Poisson’s ratio = 0.3
screw displacement = 0.01
inner ring radius = 4.5
bone constraint max depth = 1.5
--

7.8.10 Determining the screw orientation

In order to properly apply the desired constraints, we will need to know where the screw is. We can do this algorithmically, by
calculating the principal axes of inertia of the screw using vtkboneTensorOfInertia . We are going to assume that the principal
axis closest to the z axis is the screw axis. This won’t be exactly true. Consider for example if the screw is cut off unevenly, then
the principal axis of inertia won’t be exactly the same as the screw axis, but for our purposes, it is good enough.

message("Determining screw geometry.")

moi = vtkbone.vtkboneTensorOfInertia()
moi.SetInputData(image)
moi.SetSpecificValue(screw_material_id) v1
moi.Update()
message("Number of cells belonging to screw: %d" % moi.GetCount())
message("Volume of screw: %.2f" % moi.GetVolume())
screwCenterOfMass = (moi.GetCenterOfMassX(),

moi.GetCenterOfMassY(),
moi.GetCenterOfMassZ())

message("Center of mass of screw: %.5f, %.5f, %.5f" % screwCenterOfMass)
screwAxis = moi.GetPrincipalAxisClosestToZ()
message("Axis of screw: %.5f, %.5f, %.5f" % screwAxis)
screwDistanceToBoundary = (bounds[5] - screwCenterOfMass[2]) / screwAxis[2]
screwCenterAtBoundary = (

screwCenterOfMass[0] + screwDistanceToBoundary * screwAxis[0],
screwCenterOfMass[1] + screwDistanceToBoundary * screwAxis[1],
bounds[5]) v2

message("Distance from screw center of mass to top boundary: %.3f" % ←↩
screwDistanceToBoundary)

message("Screw center at top boundary: %.3f, %.3f, %.3f" % screwCenterAtBoundary)

v1 This is how we limit the inertia tensor to be calculated only over the screw elements.v2 This is a simple geometric calculation: given the center of mass of the screw and the direction of the screw axis, find the
intersection with the upper bound of the model.

Now we run it, and this part of the script generates output like this:

1.55 Determining screw geometry.
1.67 Number of cells belonging to screw: 449618
1.67 Volume of screw: 666.13
1.67 Center of mass of screw: 20.20622, 19.02016, 18.21310
1.67 Axis of screw: -0.00733, -0.00243, 0.99997
1.67 Distance from screw center of mass to boundary: 16.785
1.67 Screw center at boundary: 20.083, 18.979, 34.998

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneTensorOfInertia.html

Faim Finite Element Analysis Manual 126 / 206

Comparing by eye with the rendering in ParaView, we can determine that these values are about right, so we give ourselves a
gold star in advanced math and carry on.

7.8.11 Adding a boundary condition: applying a displacement to the screw end

We want to add a boundary condition to the screw where it intersects the boundary of the model. All these nodes lie on a plane,
so they are easily found with the function AddNodesOnPlane provided in vtkboneNodeSetsByGeometry . Note that these
nodes get associated with the FE model object, and we have to assign a name, in this case “screw_top”, so that we can refer later
to this set.

message("Adding the screw_top boundary condition.")

vtkbone.vtkboneNodeSetsByGeometry.AddNodesOnPlane(
2, v1
bounds[5], v2
"screw_top", v3
model,
screw_material_id) v4

message("Found %d nodes belonging to screw_top" %
model.GetNodeSet("screw_top").GetNumberOfTuples())

v1 The value 2 specified the z-axis (VTK and python being zero-indexed).v2 This is zmax.v3 The name of the node set we are creating.v4 This argument is optional, and specifies that we only want nodes associated with material ID “screw_material_id”. This
is not actually necessary for the given data, since no elements of other material IDs intersect the zmax surface.

We want to be able to inspect this result, and ensure that we have in fact selected the nodes on the top of the screw. To do this,
run the script to update the model file. Now, as in the tutorial Bending test of a radius bone with an uneven surface, we are going
to use the tool n88extractsets to extract and visualize the node set.

$ n88extractsets sawbone.n88model
Reading N88 Model file : sawbone.n88model
Writing node set : sawbone_node_set_screw_top.vtp

The file sawbone_node_set_screw_top.vtp can be opened an visualized with ParaView. The nodes are shown in Figure
43, exactly on the end of the screw. This is what we want.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneNodeSetsByGeometry.html

Faim Finite Element Analysis Manual 127 / 206

Figure 7.29: Screw top nodes, shown as white dots on the surface of the screw

Tip
An alternative to using n88extractsets is to add lines to extract and save the node set directly to the script. We no longer
recommend this, as it makes the script longer, more complex, and slower to run. However, for the record, this is how it would
be done,

writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetInputData(model.DataSetFromNodeSet("screw_top"))
writer.SetFileName("screw_top_nodes.vtu")
writer.Update()

Having verified that we have found the set of nodes that we want, we can use the method ApplyBoundaryCondition
of the vtkboneFiniteElementModel object to create a boundary condition. Note that we also give this the name “screw_top_-
displacement”.

model.ApplyBoundaryCondition(
"screw_top", v1
2, v2
screw_displacement, v3
"screw_top_displacement")

v1 The name of the set to which is applied the boundary condition.v2 Once again the value 2 means the z directionv3 This variable is the numerical value of the displacement.

7.8.12 Fixing the nodes in a ring on the bone surface

This boundary condition is much more difficult, because we want to find nodes lying approximately in a ring on a rough surface.
The approach we will take is to successively whittle down candidate nodes by applying a sequence of criteria, until we have
finally just the nodes we want. These are the criteria:

1. Elements (cells) lie between a specified inner radius and outer radius, as measured from the screw axis.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 128 / 206

2. Nodes lie within a maximum specified depth from the highest node satisfying the first criterion.

3. Nodes are visible from above.

Tip
These selection criterion could in principle be applied in a different order. The reason for doing the selection by visibility last,
is that it is computationally expensive, so we want to whittle down the candidate nodes/elements as much as possible before
applying a visibility test.

Step 1: Selecting cells within a hollow cylinder

VTK uses the concept of implicit functions which can be used to select points and cells within or without a certain geometry.
Here we are going to use two vtkCylinder objects, and combine them with a difference operation with a vtkImplicitBoolean .
This will result in a hollow cylinder. VTK has a filter object, vtkExtractGeometry , that will select points and cells based on a
specified implicit function.

One complication is that set of Points in the output of vtkExtractGeometry are different than the original Points, and so the Point
IDs will be different. However, we need to know the original Point IDs in order to be able to apply boundary conditions to
the FE model. The solution to this is to use a concept in VTK called “Pedigree ID”. These can be accessed with the method
GetPedigreeIds from the PointData.

Note
Not every VTK data set will have Pedigree IDs. They must be added to the data set before we start chopping out subsets.
However, by default vtkboneFiniteElementModelGenerator creates vtkboneFiniteElementModel objects with Pedigree IDs.

message("Adding the fixed_bone_surface boundary condition.")

inner_cylinder = vtk.vtkCylinder() v1
inner_cylinder.SetRadius(inner_ring_radius)
inner_cylinder.SetCenter(screwCenterAtBoundary[0], 0, screwCenterAtBoundary[1]) v2
outer_cylinder = vtk.vtkCylinder()
outer_cylinder.SetRadius(outer_ring_radius)
outer_cylinder.SetCenter(screwCenterAtBoundary[0], 0, screwCenterAtBoundary[1]) v3
rotate_Y_to_Z = vtk.vtkTransform() v4
rotate_Y_to_Z.RotateX(90)

cylinder_difference = vtk.vtkImplicitBoolean()
cylinder_difference.AddFunction(outer_cylinder)
cylinder_difference.AddFunction(inner_cylinder)
cylinder_difference.SetOperationTypeToDifference()
cylinder_difference.SetTransform(rotate_Y_to_Z)

cylinder_extractor = vtk.vtkExtractGeometry()
cylinder_extractor.SetImplicitFunction(cylinder_difference)
cylinder_extractor.SetInputData(model)
cylinder_extractor.Update()
geometry_in_ring = cylinder_extractor.GetOutput() v5
message("Found %d elements between inner and outer radii." % geometry_in_ring. ←↩

GetNumberOfCells())

v1 Important: vtkCylinder is by default oriented with a y axis of rotation. We will rotate to z axis of rotation later.v2 , v3 Note that the center is swapped y↔ z because of the transform that will be applied.

http://www.vtk.org/doc/release/6.3/html/classvtkCylinder.html
http://www.vtk.org/doc/release/6.3/html/classvtkImplicitBoolean.html
http://www.vtk.org/doc/release/6.3/html/classvtkExtractGeometry.html
http://www.vtk.org/doc/release/6.3/html/classvtkExtractGeometry.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModelGenerator.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://www.vtk.org/doc/release/6.3/html/classvtkCylinder.html

Faim Finite Element Analysis Manual 129 / 206

v4 This is the transform we need to bring y → z. Note that the transformation will be applied to input points, not to the
cylinder geometry.v5 The output will be another vtkUnstructuredGrid, which consists of a subset of the input geometry (including a subset of
both Cells and Points).

Now, this is a good place to see what we have so far for a selection. There are two possibilites: we could write out geometry_-
in_ring with a vtkXMLUnstructuredGridWriter filter, or we could add the element IDs as a set to the model. Let’s do the
latter:

elements_in_ring = vtk.vtkIdTypeArray() v1
elements_in_ring.DeepCopy(geometry_in_ring.GetCellData().GetPedigreeIds())
elements_in_ring.SetName("in_ring")
model.AddElementSet(elements_in_ring)

v1 To keep things clear, we’re going to make a copy of the data array that is the PedigreeIds. This will allow us to modify it, by
for example re-naming it, without affecting the original. There are two steps to this: creating a new empty vtkIdTypeArray
and then using its DeepCopy method on the data array we want to copy.

Again, run the script to update the n88model file. We can now extract this element set from it as follows:

$ n88extractsets --element_sets sawbone.n88model
Reading N88 Model file : sawbone.n88model
Writing element set : sawbone_element_set_in_ring.vtp

Figure 44 shows this selection (i.e. the file sawbone_element_set_in_ring.vtp), together with the screw elements,
shown for context. (We used a Threshold filter in ParaView to show just the screw cells from sawbone.n88model.) Figure
45 is another view of the same data. This view is more suited to inspecting the ring geometry of our selection. To construct this
view, first hit the +z button on the toolbar in order to view exactly along the z axis. Then from View Settings under the Edit
menu, select Use Parallel Projection. Finally, change the Representation of both data sets to Surface With Edges in order to show
individual Cells.

Figure 7.30: Geometry as selected by hollow cylinder filter

http://www.vtk.org/doc/release/6.3/html/classvtkUnstructuredGrid.html
http://www.vtk.org/doc/release/6.3/html/classvtkXMLUnstructuredGridWriter.html
http://www.vtk.org/doc/release/6.3/html/classvtkIdTypeArray.html

Faim Finite Element Analysis Manual 130 / 206

Figure 7.31: Geometry as selected by hollow cylinder filter, seen in flat projection

Step 2: Eliminating nodes below a certain depth

To select elements based on depth, as measured from the highest node in our set, we apply a similar approach as we did to select
elements within the correct radii. We use a VTK implicit function, in this case a vtkBox , to specify the geometrical volume to
which we want to limit our element set.

message("Filtering node set by depth.")

geometry_in_ring_bounds = geometry_in_ring.GetBounds() v1
message("Bounds of ring geometry: ", (" %.4f"*6) % geometry_in_ring_bounds)
box_bounds = (geometry_in_ring_bounds[0],

geometry_in_ring_bounds[1],
geometry_in_ring_bounds[2],
geometry_in_ring_bounds[3],
geometry_in_ring_bounds[5] - bone_constraint_max_depth,
geometry_in_ring_bounds[5])

message("Limiting selection to box bounds: ", (" %.4f"*6) % box_bounds)

box = vtk.vtkBox()
box.SetBounds(box_bounds)

filter = vtk.vtkExtractGeometry()
filter.SetImplicitFunction(box)
filter.ExtractInsideOn()
filter.ExtractBoundaryCellsOn()
filter.SetInputData(geometry_in_ring)
filter.Update()
geometry_depth_filtered_ring = filter.GetOutput()

message("Found %d elements in bounding box." % geometry_depth_filtered_ring. ←↩
GetNumberOfCells())

v1 Note that the zmax bound of geometry_in_ring will be at the highest bit of bone in the ring.

http://www.vtk.org/doc/release/6.3/html/classvtkBox.html

Faim Finite Element Analysis Manual 131 / 206

Now just as before, we can create a corresponding element set for the purposes of inspection:

elements_depth_filtered_ring = vtk.vtkIdTypeArray()
elements_depth_filtered_ring.DeepCopy(geometry_depth_filtered_ring.GetCellData(). ←↩

GetPedigreeIds())
elements_depth_filtered_ring.SetName("depth_filtered_ring")
model.AddElementSet(elements_depth_filtered_ring)

Run the script, and use n88extractsets to extract the element sets, and it will create a new file, sawbone_element_set_-
depth_filtered_ring.vtp.

Figure 46 shows the remaining elements after filtering by depth.

Figure 7.32: Ring geometry after filtering by depth

Step 3: Selecting only the nodes visible from above

We can use the function FindNodesOnVisibleSurface from vtkboneNodeSetsByGeometry for this purpose. We need to
pass it a normal vector for the viewing direction, as well as an empty vtkIdTypeArray for storing the result.

message("Finding visible nodes.")

visibleNodesIds = vtk.vtkIdTypeArray() v1
normalVector = (0,0,1) v2
vtkbone.vtkboneNodeSetsByGeometry.FindNodesOnVisibleSurface(

visibleNodesIds,
geometry_depth_filtered_ring,
normalVector,
bone_material_id) v3

visibleNodesIds.SetName("ring_top_visible")
model.AddNodeSet(visibleNodesIds)

message("Found %d visible nodes." % visibleNodesIds.GetNumberOfTuples())

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneNodeSetsByGeometry.html
http://www.vtk.org/doc/release/6.3/html/classvtkIdTypeArray.html

Faim Finite Element Analysis Manual 132 / 206

v1 This will store the result as a list of Point IDs.v2 This is the negative of the viewing direction.v3 FindNodesOnVisibleSurface automatically returns the Pedigree Ids, provided that they exist on in input object
(they do).

Again, run the script to update the n88model file. This time we want to extract the node sets

$ n88extractsets --node_sets sawbone.n88model
Reading N88 Model file : sawbone.n88model
Writing node set : sawbone_node_set_screw_top.vtp
Writing node set : sawbone_node_set_ring_top_visible.vtp

The resulting ring-shaped cloud of points (file sawbone_node_set_ring_top_visible.vtp) is shown in Figure 47.
These are the nodes to which we will apply our fixed boundary condition.

Figure 7.33: Bone nodes after filtering by visibility from above

Defining the boundary condition on the bone

Now that we have a named node set for this constraint, it is easy to create the desired boundary condition, which we will name
“fixed_bone_surface”:

model.FixNodes("ring_top_visible", "fixed_bone_surface")

7.8.13 Adding a convergence set

As we did in Tutorial: Deflection of a cantilevered beam; adding custom boundary conditions and loads, we will add a conver-
gence set. See Convergence measure for discussion.

Create a convergence set: the force on the screw

model.ConvergenceSetFromConstraint("screw_top_displacement")

This method notices that the constraint named screw_top_displacement, which we created previously, is a boundary condition.
It then constructs the compliment, which is the force summed over all nodes subject to the boundary conditions. It is this force
that the solver will watch to determine when its value ceases to change meaningfully. At that point the solver is finished.

Faim Finite Element Analysis Manual 133 / 206

7.8.14 Specifying sets for post-processing

Just as we saw in the tutorial Deflection of a cantilevered beam; adding custom boundary conditions and loads, there remains
one more step to complete the n88model file, and that is to identify the sets to be used for post-processing calculations by
n88postfaim. We are interested in values calculated on the sets “ring_top_visible” and “screw_top”. However, when we have
generated our own custom sets, as we have here, we must be careful about providing both node sets and the corresponding
element sets to n88postfaim. If you review how we created the sets for generating boundary conditions, you will observe that
we only generated the node sets. Fortunately, there is a method GetAssociatedElementsFromNodeSet of vtkboneFini-
teElementModel that will identify the corresponding element set given a node set.

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()
pp_elem_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_ELEMENT_SETS()
for setname in ["ring_top_visible", "screw_top"]:

pp_node_sets_key.Append(info, setname)
elementSet = model.GetAssociatedElementsFromNodeSet(setname)
model.AddElementSet(elementSet)
pp_elem_sets_key.Append(info, setname)

After running the script, we can verify that these post-processing sets are in fact specified in the n88model file,

$ n88modelinfo --problems sawbone.n88model
Problems:
--

Name : Problem1
Part : Part1
Constraints : screw_top_displacement,fixed_bone_surface
PostProcessingNodeSets : ring_top_visible,screw_top
PostProcessingElementSets : ring_top_visible,screw_top

--

Tip
As before, it is possible to skip this step, and instead to specify the node and element sets to be used by n88postfaim on the
command line of n88postfaim with the arguments

--node_sets=ring_top_visible,screw_top --element_sets=ring_top_visible,screw_top

We now have a complete n88model file. If you want, you can proceed to solve it using faim, as in previous tutorials. We leave
it as an exercise to identify, from the analysis file, the net forces between the screw top and the constrained ring of bone.

This concludes the screw pull-out tutorial. In this tutorial we learned how to generate node sets based on complex criteria, to
which we can then apply boundary conditions. This is the final tutorial in the series on learning vtkbone.

7.9 Tutorial: Radius compression with transformed boundary conditions for longi-
tudinal bone strength estimates

In this tutorial, we will develop a Python script that can perform axial compression of a radius model from HR-pQCT, with
boundary conditions that are transformed by the results of 3D rigid-body image registration. This application of Faim is used in
a novel method for longitudinal estimates of bone strength, so-called “registered FE” (Plett et al. 2020 [in review]).

Briefly, the method was developed to take an image from a longitudinal series that has been registered (3D rigid-body image
registration) and cropped to the largest common volume of bone captured in the image series. The boundary conditions of the FE
model are transformed using the output from image registration (IPL, Scanco Medical AG) to ensure that the compression test is
performed in the same orientation for all images in the series.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneFiniteElementModel.html

Faim Finite Element Analysis Manual 134 / 206

This tutorial uses vtkbone in a custom script that generates an n88model file. It is highly recommended to complete Tutorial:
Compressing a cube revisited using vtkbone before proceeding to this tutorial.

This tutorial will include:

• vtkbone: How to initialize boundary conditions on an uneven load surface, such as when using a 3D registered bone volume
from longitudinal HR-pQCT.

• vtkbone: How to transform boundary conditions and apply them to your finite element model.

• Example: “Registered FE” on a distal radius segment.

This tutorial assumes:

• You have a basic understanding of Python scripting and Faim.

• You have at least completed Tutorials 7.1-5 in this manual.

• You are familiar with 3D image registration and its outputs, specifically the implementation used for longitudinal HR-pQCT
images.

Registered FE is currently implemented using Python-based tools, packaged in Chapter 3, to create custom finite element models
that can be solved with Faim.

Note
If you do not wish to build the script on your own as you follow this tutorial, a finished version is provided in the tutorial files
(http://numerics88.com/downloads/).

7.9.1 Script setup

We will write the script in the following sequence:

1. Import packages.

2. Define utility functions.

3. Define model generator function.

4. Define and call main function.

Start by opening a new script file titled “modelgenerator_registered_fe.py” (or another name that describes the purpose of the
script).

Now we will import the packages that are needed for this script. Any additional packages that you wish to use may be added
below this list:

import os
import sys
import argparse
import numpy as np
import vtk
import vtkbone
additional packages can be added here

Tip
If you provide an alias for a package (e.g. “np” for “numpy”, as shown above) the alias should be used consistently throughout
the script to avoid confusion.

http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 135 / 206

Let’s give the script a quick test run to make sure everything is installed correctly:

$ python modelgenerator_registered_fe.py

Running this script should result in no output, so any output will indicate an error with the import commands. Most often, any
errors that occur at this point are likely triggered by a package that is not installed in your Python environment, or your Python
environment is not activated.

7.9.2 Optional function: Messages with a time stamp

A useful addition to any script, particularly a script with many sequential steps, is a utility function that can output messages (i.e.
warnings, errors, other key outputs) with a time stamp. This can make debugging easier, but can also help you pinpoint errors
that do not throw obvious errors in the code (e.g. flawed image data that leads to unusual FE results).

Though there are many ways to accomplish this in Python, a utility function presents an excellent modular approach:

def message(msg, *additionalLines):

“””Print message with time stamp.

The first argument is printed with a time stamp.
Subsequent arguments are printed one to a line without a time stamp.
“””

print((’{0:8.2f} {1:s}’.format(time.time() - start_time,msg)))

for line in additionalLines:
print((" " * 9 + line))

Note
You will need to import the time package (import time) with the packages we imported earlier.

We can also initialize the time stamp after this point:

start_time = time.time()

7.9.3 Utility function: Read a material file

The registered FE method currently uses custom bone volumes from the XtremeCT II systems (insert bone image), so a material
file makes it easy to identify the loading surfaces and assign material properties to the bone volume. For more details on creating
material files, see Material definitions file.

Our material file will have the following format:

MaterialDefinitions:
Surface:

Type: LinearIsotropic
E: 8748 v1
nu: 0.3

Bone:
Type: LinearIsotropic
E: 8748
nu: 0.3

MaterialTable:
127: Surface
125: Bone

Faim Finite Element Analysis Manual 136 / 206

v1 This is a typical modulus used for XtremeCT II images.

Note
A copy of this material file is stored with the tutorial files with the name “material_cort_trab_xt2_reg.txt”.

Now that we have a material file, we need to define a function that can read it for our model generator.

def ReadMaterialFile(material_file):

Initialize material names and identifiers:
bone_name = ’Bone’
surface_name = ’Surface’
bone_material_id = 125
surface_material_id = 127

Read material_file and extract modulus and Poisson’s ratio:
with open(material_file, encoding=’cp1250’) as searchfile:

for line in searchfile:
front = line.split(’:’)[0]
if ("E" in front):

bone_modulus = float(line.split(’:’)[1])
surface_modulus = bone_modulus

if ("nu" in front):
bone_poissons_ratio = float(line.split(’:’)[1])
surface_poissons_ratio = bone_poissons_ratio

Return material parameters to the model generator function:
return bone_name, bone_material_id, bone_modulus, bone_poissons_ratio, surface_name, ←↩

surface_modulus, surface_poissons_ratio, surface_material_id

This function defines material names and identifiers based on the labels found in the bone volumes, then reads the material
properties (i.e. modulus and Poisson’s ratio) from the material file. These properties will be assigned to the FE model via a
material table in subsequent steps.

To read the file, the function searches through each line in the material file to identify and extract the elastic modulus and the
Poisson’s ratio. After reading the file, the material properties of the bone and load surfaces are returned.

7.9.4 Model generator function: First steps

The most important function in this script is the model generator function, which follows this sequence:

1. Read the input image

2. Read/generate a transformation matrix to transform boundary conditions

3. Generate a voxel-based mesh and apply material properties from the material file

4. Define boundary conditions

5. Write the finite element model to an output file for the FE solver

We want to read a standard HR-pQCT image file (AIM), so we will use vtkboneAIMReader(). Note the use of the mes-
sage() function we defined earlier.

def CreateN88Model(input_file, output_file, material_file, transform_file, overwrite, ←↩
displacement):

Optional file checks ---
Ask the user if output_file should be overwritten:

Faim Finite Element Analysis Manual 137 / 206

if os.path.isfile(output_file) and not overwrite: v1
result = eval(input(’File \"{}\" already exists. Overwrite? [y/n]: ’.format(←↩

output_file)))
if result.lower() not in [’y’, ’yes’]:

print(’Not overwriting. Exiting...’)
os.sys.exit()

Check that input_file exists:
if not os.path.isfile(input_file): v2

os.sys.exit(’[ERROR] File \"{}\" not found!’.format(input_file))

Read input_file:
message("Reading AIM file " + input_file + " as input...")
reader = vtkbone.vtkboneAIMReader()
reader.SetFileName(input_file)
reader.DataOnCellsOn()
reader.Update()

image = reader.GetOutput()

Check that input_file is read correctly:
if not reader.GetOutput():

message("[ERROR] No image data read!")
sys.exit(1)

Report image size (bounds):
message("Image bounds:", (" %.4f" * 6) % image.GetBounds())

v1 If an output file already exists, the user may indicate whether or not the file should be overwritten. This is an optional
step.v2 The script will stop with an error message if the input file is not found. This is an optional code segment.

Note
All code segments related to this function (i.e. written below) must be nested within the function. Be mindful of proper indentation
to avoid errors, particularly if you copy-paste the code segments in this document into a text editor.

Now we want to define the transformation matrix by which we will transform the our boundary conditions of our model. For
longitudinal image data, this transformation will likely be in the form of a 4x4 affine matrix that is returned from 3D rigid-body
image registration. This matrix contains the rotations and translations that are required to align two images (typically, follow-up
images aligned to the baseline orientation). In the SCANCO implementation of image registration, the matrix is stored within a
text file, as shown below.

SCANCO TRANSFORMATION DATA VERSION: 10
R4_MAT:

9.9992300E-01 1.0839380E-02 -6.0423953E-03 -5.5105441E-01
-1.0396725E-02 9.9756137E-01 6.9016078E-02 2.8265885E+00
6.7757516E-03 -6.8947942E-02 9.9759725E-01 3.9438124E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00

To rotate the boundary conditions of any follow-up images (in a given image series) with respect to the baseline image, you will
need to extract the 3x3 rotation matrix (the 9 elements in the upper-left of the 4x4 affine matrix) by adding the following lines to
our CreateN88Model() function:

if os.path.isfile(transform_file): v1
message("Reading IPL transformation matrix...")
if(transform_file):

t_mat = np.loadtxt(fname=transform_file, skiprows=2)

Faim Finite Element Analysis Manual 138 / 206

rotation = t_mat[:3, :3]
else: v2

message("[WARNING]No transformation matrix applied...")
rotation = np.identity(3)

v1 This code segment is specifically designed for transformation matrices generated by 3D registration in IPL (SCANCO
Medical AG) for XtremeCT II images. If you are reading a transformation matrix that has a different format than the one
above, you will need to modify this code accordingly.v2 The else statement has been added to allow the user to skip the transformation step altogether. This is primarily to allow
users to analyze baseline images with the same script as the follow-up images.

Now would be a good time to read the material file by calling the function we defined earlier. Remember to place this code
segment within the CreateN88Model() function.

if os.path.isfile(material_file):
bone_name, bone_material_id, bone_modulus, bone_poissons_ratio, surface_name, ←↩

surface_modulus, surface_poissons_ratio, surface_material_id = ReadMaterialFile(←↩
material_file)

Report error if file is missing or not read correctly:
else:

message("[ERROR] No material data read!")
sys.exit(1)

Report material properties so the user can check values: v1
message(’Material attributes:’,

’{:16s} = {:>8s}’.format(’Material name’, bone_name),
’ {:14s} = {:8d}’.format(’ID’, bone_material_id),
’ {:14s} = {:8.2f} MPa’.format(’Modulus’, bone_modulus),
’ {:14s} = {:8.2f}’.format(’Poissons ratio’, bone_poissons_ratio),
’{:16s} = {:>8s}’.format(’Material name’, surface_name),
’ {:14s} = {:8d}’.format(’ID’, surface_material_id),
’ {:14s} = {:8.2f} MPa’.format(’Modulus’, surface_modulus),
’ {:14s} = {:8.2f}’.format(’Poissons ratio’, surface_poissons_ratio))

v1 This is an optional step to make sure our material properties have been read correctly.

Since we have processed all our inputs, we can now create a finite element mesh from our image. We will apply a connectivity
filter to our image, to make sure the model comprises a single object (i.e. with no floating pieces of bone or image noise in the
model).

message("Applying connectivity filter...")
confilt = vtkbone.vtkboneImageConnectivityFilter()
confilt.SetInputData(image)
confilt.Update()
image = confilt.GetOutput()

Let’s mesh our image:

message("Generating mesh...")
mesher = vtkbone.vtkboneImageToMesh()
mesher.SetInputData(image)
mesher.Update()
mesh = mesher.GetOutput()

To apply the material properties to the mesh we just created, we will need to make a material table. This process takes the elastic
modulus and Poisson’s ratio that we read from the material file and assigns them to a linear-elastic material in the table.

Faim Finite Element Analysis Manual 139 / 206

message("Generating material table...")
E = bone_modulus
v = bone_poissons_ratio
material_name = bone_name
linear_material = vtkbone.vtkboneLinearIsotropicMaterial()
linear_material.SetYoungsModulus(E)
linear_material.SetPoissonsRatio(v)
linear_material.SetName(material_name)

material_table = vtkbone.vtkboneMaterialTable()
material_table.AddMaterial(surface_material_id,linear_material)
material_table.AddMaterial(bone_material_id,linear_material)

We apply the material parameters to the mesh by compiling the mesh and material table into an initialized form of the finite
element model, a “test base”.

message("Compiling model...")
Compile the mesh and material_table into a test base:
modelConfig = vtkbone.vtkboneApplyTestBase()
modelConfig.SetInputData(0, mesh)
modelConfig.SetInputData(1, material_table)

Then we can tell Faim to identify the load surfaces, which are voxels/elements labeled with the number 127.

Assign material_table properties to the appropriate voxels:
modelConfig.SetTopConstraintSpecificMaterial(127)
modelConfig.UnevenTopSurfaceOn()
modelConfig.UseTopSurfaceMaximumDepthOn()
modelConfig.SetTopSurfaceMaximumDepth(3.5) v1
modelConfig.SetBottomConstraintSpecificMaterial(127)
modelConfig.UnevenBottomSurfaceOn()
modelConfig.UseBottomSurfaceMaximumDepthOn()
modelConfig.SetBottomSurfaceMaximumDepth(3.5)
modelConfig.Update()

model = modelConfig.GetOutput()

Report model size (bounds):
message("Model bounds:", (" %.4f" * 6) % model.GetBounds())

v1 3.5 mm was chosen as a distance slightly less than half of the standard XtremeCT II image volume (10.2 mm).

7.9.5 Model generator function: Apply transformed boundary conditions

Applying transformed boundary conditions is relatively simple and requires only a few additional lines of code from a standard
“non-registered” test.

First, we need to define a displacement vector for the model.

message("Defining displacement boundary conditions...")

Initialize the displacement vector:
e_init = np.array([0, 0, -float(displacement)]) v1
Fix the bottom surface nodes of the model, completely:
model.FixNodes(’face_z0’, ’bottom_fixed’) v2

v1 Remember that we use “np” as an alias for the numpy package.

Faim Finite Element Analysis Manual 140 / 206

v2 Since we are rotating the applied displacement, we need to use axial boundary conditions. This means the fixed surface
must be fixed in every direction. A uniaxial boundary condition would be complex and require nodes to translate within
a plane defined perpendicular to the loading direction. A future challenge!

The displacement vector is typically oriented along the z-axis and has a magnitude of 0.102 mm, 1% of the image “thickness”,
for a standard XtremeCT II bone model (to achieve 1% apparent strain).

Since we are transforming the boundary conditions of follow-up images, so they are aligned in the same direction as the baseline
image, the displacement vector needs to be transformed with the rotation matrix we generated earlier.

Transform the displacement vector:
message("Setting boundary conditions...")
e_trafo = np.dot(np.linalg.inv(rotation), e_init)

Note
Even though we are transforming the displacement vector, the magnitude will remain the same (i.e. 0.102mm). In the registered
FE method, the magnitude of “displacement” can also be changed to reflect the reduction in image thickness by 3D image
registration.

Now we want to create a set of boundary conditions on the load surface, using the transformed displacement vector we just
created. We will do this using the ApplyBoundaryCondition() function from vtkbone.

Apply boundary conditions by components of the displacement vector:
model.ApplyBoundaryCondition(’face_z1’, vtkbone.vtkboneConstraint.SENSE_X, e_trafo[0], ’ ←↩

x_moved’) v1
model.ApplyBoundaryCondition(’face_z1’, vtkbone.vtkboneConstraint.SENSE_Y, e_trafo[1], ’ ←↩

y_moved’)
model.ApplyBoundaryCondition(’face_z1’, vtkbone.vtkboneConstraint.SENSE_Z, e_trafo[2], ←↩

‘z_moved’)

v1 Make sure the vector components (x in e_trafo[0]; y in e_trafo[2]; z in e_trafo[2]) match the corresponding
boundary condition (SENSE_X, SENSE_Y, SENSE_Z).

7.9.6 Model generator function: Define model outputs and write n88model file

Before writing the n88model file, we want to define the model outputs that will be recorded when the model is solved. So, we
will define the node sets from which we acquire our bone strength estimates (e.g. reaction force), specifically the top and bottom
surfaces (loaded and fixed) of the model we just created.

info = model.GetInformation()
pp_node_sets_key = vtkbone.vtkboneSolverParameters.POST_PROCESSING_NODE_SETS()

pp_node_sets_key.Append(info, ’face_z1’) # top surface nodes
pp_node_sets_key.Append(info, ’face_z0’) # bottom surface nodes
model.AppendHistory("Created with modelgenerator_registered_fe.py version 1.0")

Almost there! The last step in this function is to write the model to an n88model file. The filename will be defined by an input
variable “output_file”.

message("Writing n88model file: ", output_file)
writer = vtkbone.vtkboneN88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(output_file)
writer.Update()

Faim Finite Element Analysis Manual 141 / 206

7.9.7 Main function: Process input variables and call model generator function

The main function of this script processes the user’s inputs and sends them to the model generator function to create our
n88model file. The input arguments will be defined with an argument parser, including mandatory and optional variables.
We can also include (brief) help documentation for the user to clarify what input variables are required for this script to run
properly.

The input arguments we will define are:

• Input file (required): A segmented AIM file.

• Output file (required): The output filename.

• Material file (required): The material file.

• Transform file (optional): The 4x4 transformation file from 3D image registration (*.txt). Remember, this is not required if
processing a baseline image and an identity matrix will be used instead.

• Overwrite (optional): Overwrite existing output_file. Remember, the program will ask if overwrite is not indicated and
output_file exists.

• Displacement (optional): Value to initialize displacement vector; default is 0.102 mm.

Written in code, this function will look like this:

Main function
def main():

description = ’’’Generates an n88model from 3D registered images.

If no valid transform file is found, then no transform is applied.

Authors: Ryan M. Plett and Steven K. Boyd’’’

parser = argparse.ArgumentParser(formatter_class = argparse.RawTextHelpFormatter, prog ←↩
= ’blmodelgenerator_reg’, description = description)

parser.add_argument(’input_file’, help = ’Input image file AIM).’)
parser.add_argument(’output_file’, help = ’Output n88model file (*.n88model).’)
parser.add_argument(’--material_file’, help = ’Material property file (*.txt).’)
parser.add_argument(’--transform_file’, default = ’dummy’, help = ’Transformation ←↩

matrix (*.txt).’)
parser.add_argument(’--overwrite’, action = ’store_true’, help = ’Overwrite existing ←↩

output.’)
parser.add_argument(’--displacement’, type = float, default = ’0.102’, help = ’ ←↩

Displacement boundary condition for registered volume (LCV).’)
args = parser.parse_args()

CreateN88Model(**vars(args))

To end the script, it is important to make sure all of these functions will actually be called by the program when it is run from
the command line. This is done by a short code segment that checks to make sure the script has been run correctly from the
command line.

Call main function
if __name__ == ’__main__’:

main()

Faim Finite Element Analysis Manual 142 / 206

7.9.8 Example: Registered FE in practice

Now we will put this method into practice. We will test this script, using a registered XtremeCT II image (distal radius) and
performing a standard compression test to 1% apparent strain.

You will need the following files, provided in the tutorial files (http://numerics88.com/downloads/):

• input_file: REPO_004_RR_S4_REG_HOM_LS.AIM

• transform_file: REPO_004_RR_S4_REG.TXT

• material_file: material_cort_trab_xt2_reg.txt

The image file is an XtremeCT II image of a distal radius. The radius was imaged four times and each follow-up image (S2,
S3, and S4) were misaligned from the baseline image (S1). The images were registered with 3D rigid-body image registration,
identifying the the largest common volume (% overlap) between scans. For this radius, the volume was found to be 91.37% of
the original bone volume. We will use this value to determine our compressive displacement for the test.

The transform file contains the affine transformation that is needed to transform the image (S4) to baseline (S1); therefore, each
follow-up image will have the same volume (defined by the overlap) and different transformation files.

Figure 7.34: 3D registered radius image (XtremeCT II, SCANCO Medical AG).

Let’s run our script in “help” mode (-h) to make sure we have all the inputs:

$ Python modelgenerator_registered_fe.py -h

usage: blmodelgenerator_reg [-h] [--material_file MATERIAL_FILE]
[--transform_file TRANSFORM_FILE] [--overwrite]
[--displacement DISPLACEMENT]
input_file output_file

http://numerics88.com/downloads/

Faim Finite Element Analysis Manual 143 / 206

Generates an n88model from 3D registered images.

If no valid transform file is found, then no transform is applied.

Authors: Ryan M. Plett and Steven K. Boyd

positional arguments:
input_file Input image file (*.AIM).
output_file Output n88 model file (*.n88model).

optional arguments:
-h, --help show this help message and exit
--material_file MATERIAL_FILE

Material property file (*.txt).
--transform_file TRANSFORM_FILE

Transformation matrix (*.txt).
--overwrite Overwrite existing output.
--displacement DISPLACEMENT

Displacement boundary condition for registered volume.

Note
Make sure you activate your anaconda environment before executing the script.

Here we can see the information that we added to the main function in our script with the argument parser. From this, we know
that we are still missing the output_file and displacement arguments.

We will set the output filename to be the same as the input, just with the “n88model” extension instead of AIM, so it will look
something like: REPO_004_RR_S4_REG_HOM_LS.n88model .

The volume of this image is 91.37% of the standard image volume (thickness 10.2mm), so we will scale the input displacement
to be 91.37% of the standard displacement (0.102 mm): 0.9137 ∗ 0.102mm = 0.093mm . Calculating the displacement in this
way provides a simplified “scaling factor” so that the apparent strain remains close to 1% for every scan in a study.

Now that we have all our inputs organized, let’s test our script:

$ Python modelgenerator_registered_fe.py REPO_004_RR_S4_REG_HOM_LS.AIM ←↩
REPO_004_RR_S4_REG_HOM_LS.n88model --material_file material_cort_trab_xt2_reg.txt -- ←↩
transform_file REPO_004_RR_S4_REG.TXT --overwrite --displacement 0.093

If the script ran correctly, the output should look something like this:

0.00 Reading AIM file REPO_004_RR_S4_REG_HOM_LS.AIM as input...
0.10 Image bounds:

49.2881 67.5587 46.0103 69.4404 0.0000 10.1970
0.10 Reading IPL transformation matrix...
0.11 Material attributes:

Material name = Bone
ID = 125
Modulus = 8748.00 MPa
Poissons ratio = 0.30

Material name = Surface
ID = 127
Modulus = 8748.00 MPa
Poissons ratio = 0.30

0.11 Applying connectivity filter...
0.63 Generating mesh...
1.97 Generating material table...
1.97 Compiling model...
21.02 Model bounds:

Faim Finite Element Analysis Manual 144 / 206

49.5309 67.4373 46.1317 69.0762 0.0000 9.4079
21.02 Defining displacement boundary conditions...
21.02 Setting boundary conditions...
21.02 Writing n88model file:

REPO_004_RR_S4_REG_HOM_LS.n88model
257.88 Done. Have a nice day! v1
v1 It’s never a bad idea to have a little fun with your scripts. The message() function can make your day sometimes. :)

A warning may appear while the script is run,

Warning: In ../Filters/Extraction/vtkValueSelector.cxx, line 547
vtkValueSelector (0x7fa8e6dbecd0): Warning: range selections should use two-component ←↩

arrays to specify the range. Using single component arrays with a tuple for the low and ←↩
high ends of the range is legacy behavior and may be removed in future releases.

This is nothing to worry about and will not affect the results of the script.

Figure 7.35: Unsolved n88model with load surfaces labeled (default colours in Paraview).

You can now solve the model with faim:

faim [additional options] [n88model file] v1
v1 See the faim reference documentation for details on the additional arguments that can be used.

Faim Finite Element Analysis Manual 145 / 206

7.9.9 Post-processing

Once your n88model is solved, the results will need to be processed using a slightly altered procedure than in a typical “non-
registered” analysis. The non-registered analysis extracts the results as the vertical component only (i.e. the z-component, as in
reaction force, displacement, etc.), since the test is conducted in exactly the vertical direction. With the registered approach, the
results are transformed and so the test is no longer conducted in the vertical direction alone; therefore, the resulting estimates
must include all components (i.e. x-, y-, z-components). To do so, we will take the magnitude of a result (u) as:

u =
√
(u2

x +u2
y +u2

z)

If the model used in our example above was solved correctly, the reaction force results (see REPO_004_RR_S4_REG_HOM_-
LS_analysis.txt) should look something like this:

==
Table 9: Nodal Forces
--
Node set: 1
Name: face_z1
..

Fx Fy Fz
total -9.520E+01 3.637E+02 -8.214E+03
average -3.430E-03 1.310E-02 -2.959E-01
std_dev 1.583E-01 1.508E-01 4.905E-01
minimum -2.011E+00 -1.950E+00 -8.329E+00
maximum 2.694E+00 3.698E+00 3.189E-01
median -5.603E-06 0.000E+00 -7.541E-02

Let’s say that we want to find the “registration-adjusted” reaction force estimate. Instead of using the total z-component of the
reaction force (-8.214 kN), we want to calculate the total reaction force magnitude as:

F =
√

(Fx2 +Fy2 +Fz2) =
√

((−9.520E +01)2 +(3.637E +02)2 +(−8.214E +03)2) = 8.223kN

This operation accounts for the transformed boundary conditions and allows us to report precise estimates of bone strength from
longitudinal data. The easiest way to implement this adjustment is to calculate the magnitude of an estimate after the results have
been parsed into a delimited file or spreadsheet for statistical analysis in Excel, SPSS, or R.

To calculate failure load with n88pistoia we will need to use a modified command than would be used in a standard analysis:

n88pistoia [n88model file name] --constraint z_moved --critical_volume 2.0 -- ←↩
critical_strain 0.007 --output_file [pistoia file name]

From our example, this command should then look like:

n88pistoia REPO_004_RR_S4_REG_HOM_LS.n88model --constraint z_moved --critical_volume 2.0 -- ←↩
critical_strain 0.007 --output_file REPO_004_RR_S4_REG_HOM_LS_pistoia.txt v1

v1 The constraint z_moved is a custom constraint that we added in the CreateN88Model function. The default for
n88pistoia is “top_moved”, so be sure to use the correct constraint in your test.

The full results set from this example can be parsed from the results files (*_analysis.txt or *_pistoia.txt) using the
following commands:

$ n88tabulate -H -o [output_file] REPO_004_RR_S4_REG_HOM_LS_analysis.txt #OR
$
$ n88tabulate -H -V "pis_fx_fail,pis_fy_fail,pis_fz_fail" -o [output_file] ←↩

REPO_004_RR_S4_REG_HOM_LS_pistoia.txt

This concludes the tutorial! You should now be able to transform displacement boundary conditions using vtkbone and inputs
from 3D image registration. The example included in this tutorial is representative of the analysis that can be performed on a
standard single-stack (10.2 mm) radius or tibia image from XtremeCT II.

Faim Finite Element Analysis Manual 146 / 206

7.10 Additional examples

In addition to the tutorials, there are additional examples included in the other_examples directory. Currently these consist
of

segment_dicom
An example of reading a raw image file and performing a simple segmentation based on a density threshold and connec-
tivity.

Faim Finite Element Analysis Manual 147 / 206

Chapter 8

Special Topics

8.1 Efficient Handling of Large Numbers of Material Definitions

In typical usage of Faim, the number of defined materials is small. In fact, often we define just a single material as “bone”. We
can, and do, take advantage of the expectation of relatively few defined materials in the following three ways:

1. The solver can pre-calculate important values for each material. In particular, the standard solver pre-calculates a 24×24
local stiffness matrix for each material. This saves quite a bit of time on each iteration, and the storage is insignificant,
provided that the number of material definitions is substantially less than the number of elements.

2. In the n88model file format, each individual material definition is stored as a kind of object, with a name, a named type,
and named characteristics and values. This allows great flexibility in defining material types. The net impact on the file
size is insignificant so long as the number of material definitions is substantially less than the number of elements.

3. When generating tables of post-processing results with n88postfaim, results can be tabulated in subtables broken down
by material ID. This is useful, but only so long as the number of defined materials stays within a range easily scanned by
humans.

Although these are important advantages, there are occasions when the assumption of few material definitions is not so good.
Here are two such cases:

A A Homminga material table is used, which generates a sequence of varying material properties
according to image density. In this case, we are typically talking about a material table of the order of
one hundred material IDs. The assumptions 1 (solver pre-calculated values) and 2 (efficient file
storage of material definitions) still hold, but the output of n88postfaim, if broken down by material,
becomes cumbersome and excessive.

B Some researchers have proposed models in which the bone anisotropy is continuously variable. To
model this with FE software requires that each element have its own stiffness matrix. Therefore the
number of required material definitions is equal to the number of elements. In this case, following
assumptions 1 and 2 results in a large inefficiencies: the solver uses greatly more memory, and the
model file is many times larger than it would be for geometric data only.

To address these issues, version 8 of Faim introduced the concept of material arrays, in contrast to the existing material tables.
This is an expansion of the capabilities of Faim, and is really only relevant for the two cases listed above. For all other cases, one
could say for normal usage, the previous concept of material tables is preferable, and it remains the default.

For the file format, a simple extension of the n88model standard is adopted, wherein a material definition object within the file
(in practice a group in netCDF terminology), may optionally, instead of having named attributes, have arrays of any length with
the same names (where arrays in netCDF are called variables). The length of the array indicates then that M materials are being

Faim Finite Element Analysis Manual 148 / 206

defined at once, and that they should get sequential material IDs. Here are how the two above cases can be handled:

A Homminga material table: You could have in your model file a single material array of length 127 for
example. It has material ID 1, which implies the definition of materials 1..127. The material ID for
each of your elements is in this range. This is in fact the method of operation of
n88modelgenerator if you select a Homminga material table, and likewise for the vtkbone class
vtkboneGenerateHommingaMaterialTable .

B Continuously variable anisotropy: You could have in your model file a single material array of length
equal to the number of elements N. It has material ID 1, implying the definition of materials 1..N .
Consequently, you must have labelled your elements with sequential material IDs 1..N .

These are the typical cases, but more exotic combinations are allowed. You don’t need to necessarily start an array at material ID
1, and you may define multiple material arrays. You can also mix traditional single material definitions with material arrays, and
there is no requirement that all the definitions in your file are of the same type. For example, you could have one material array
of isotropic materials, and another of orthotropic materials. The only rule is that be no overlap of material IDs, but otherwise in
principle anything is allowed.

Let us look at the consequences for the solver. For linear models, there are two solvers. The traditional and commonly used
solver n88solver_slt, which uses material tables internally, and the new solver n88solver_sla, which uses material
arrays internally, and is efficient only when the number of material definitions is equal to or comparable to the number of
materials. Firstly, the solvers are entirely independent of the n88model file. This is an important point: all solvers can read
all model files. n88solver_slt always converts all material definitions in the model file, regardless of whether defined
individually or in arrays, into a material table with entries for each material ID. This material table includes pre-calculated local
stiffness matrices, and the number of entries is equal to the summed lengths of all defined material arrays, plus the number of
individually defined materials. Conversely, n88solver_sla always generates an internal material array of the same length
as the number of elements. Even if you only define one, or few, materials, these few materials will repeat over and over so that
there is one entry per element. The critical efficiency of n88solver_sla as compared with n88solver_slt is that only
the minimal number of material parameters is stored in the material array, and storage of pre-calculated values is avoied. As a
consequence n88solver_sla is almost always slower than n88solver_slt; the trade-off is that n88solver_slt uses
really huge amounts of memory when the number of defined materials becomes comparable to the number of elements.

Note
The script faim will always use the solver n88solver_slt except in the single case where exactly one material array is
defined, and it has length equal to the number of elements. In this case, faim will chose to use the n88solver_sla solver.
You can of course always run the solver of your choice manually.

Finally, when it comes to post-processing with n88postfaim, where sub-tables for each material ID are generated, all material
IDs corresponding to a material array are grouped into a single subtable. This prevents the amount of output from becoming
excessive.

8.2 Direct Mechanics

Microstructural organization plays an important role in macroscopic mechanical behaviour. For example, bone microarchitectural
organization, as shown here in a human proximal femur, can exhibit patterns that are related to the macrostructural mechanical
behaviour, and those patterns vary depending on the mechanical requirements at each location within the bone. A useful approach
to characterizing the microstructural patterns (also referred to as “fabric”) is to determine the anisotropic properties of sub-
volumes of bone. In some regions of the femur, for example, the bone microarchitecture will be highly aligned with the bone
axis, but in other parts the alignment may be predominantly in a transverse orientation. The anisotropic properties typically need
to be defined at several locations due to spatial variation.

Anisotropy can be defined in terms of either the fabric or mechanical behaviour. Methods for characterizing the fabric are based
on techniques such as mean intercept length or star volume analysis, and a good resource is the paper by Odgaard (1997a).

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneGenerateHommingaMaterialTable.html

Faim Finite Element Analysis Manual 149 / 206

Essentially, fabric methods focus on the distribution of tissue microarchitecture. Alternatively, the mechanical elastic behaviour
can be determined, and has been shown by Odgaard et al. (1997b) that the anisotropic fabric and mechanical properties are
similar. This observation makes sense, and reinforces the concept that underlying bone micro-architecture is an important factor
in determining mechanical behaviour. Here we focus on the determination of bone anisotropic elastic behaviour using a so-
called direct mechanics assessment as proposed by van Rietbergen et al. (1996). In summary, six elastic finite element tests are
performed on a cubic subvolume, and those results are used to define a 6×6 stiffness matrix that relates stress to strain as per
Hooke’s Law,

σ = Cε .

The most general anisotropic material requires 21 independent coefficients to fully characterize, but it is usually most convenient
to assume there are planes of elastic symmetry, in which case there exists an orientation of a coordinate system where only 9
independent elastic coefficients are needed. See the section Linear Orthotropic Material. In this case,

C =

C11 C12 C13 0 0 0

C22 C23 0 0 0
C33 0 0 0

C44 0 0
sym. C55 0

C66

 .

Finite element models of real measurement data of biological materials do not exhibit perfect orthotropic symmetry, therefore
the process of reducing the 6×6 matrix from 21 independent coefficients to 9 involves finding an optimal coordinate system such
that some of the coefficients are close to zero. It is reasonable to assume that bone mechanical behaviour can be reduced to a case
of orthotropy; however, caution should be exercised as it is up to the user to determine whether this simplification is appropriate.

The basis of the direct mechanics approach is the application of six finite element tests to an appropriate bone subvolume:

1. uniaxial normal strain in the x-direction (εxx)

2. uniaxial normal strain in the y-direction (εyy)

3. uniaxial normal strain in the z-direction (εzz)

4. uniaxial shear strain in the x-direction (γyz)

5. uniaxial shear strain in the y-direction (γzx)

6. uniaxial shear strain in the z-direction (γxy)

These tests are applied under the conditions of unit engineering strain. Each test is evaluated for the six resulting stresses (σ xx,
σ yy, σ xx, σ yz, σ zx, σ xy), thus providing directly the values of the 6×6 stiffness matrix. The stresses are calculated as a volume
average, which can be shown to be equivalent to the surface stresses on the faces of the cube.

Finding the optimal rotation of the coordinate system to represent orthotropic behaviour involves first decomposing the stiffness
matrix into symmetric and asymmetric components. The asymmetric component is discarded, as conservation laws require that
the stiffness matrix be symmetric. (The asymmetric component thus consists entirely of measurement error.) An optimal rotation
is then found that minimizes the coefficients that would be zero for a true orthotropic material expressed in the coordinate system
of its planes of symmetry.

The primary outputs from the direct mechanics approach are the stiffness and compliance matrices (S = C-1) in the original
coordinate system, as well as in the coordinate system of optimal orthotropy. The 3×3 rotation matrix R that describes the
transformation from the specimen coordinate system to the optimal coordinate system is given; the rows are the principal axes
in the original coordinate system. Finally, from the compliance matrix, the standard orthotropic elastic constants Ei,ν ij,Gii are
extracted. See Linear Orthotropic Material for the definitions.

The use of the n88directmechanics tool is described in detail in Section 9.6.

An example run of the direct mechanics analysis is shown below.

$ n88directmechanics test25a.aim
n88directmechanics version 6.0
Copyright (c) 2012, Numerics88 Solutions Ltd.

Faim Finite Element Analysis Manual 150 / 206

input_file = test25a.aim
material_table = homogeneous
youngs_modulus = 6829.0
poissons_ratio = 0.3
connectivity_filter = on

0.00 Reading image file test25a.aim
0.00 Read 17576 points from image file.
0.00 Applying connectivity filter.
0.00 Masked out 0 unconnected voxels.
0.00 Converting to hexahedral cells.
0.01 Generated 7087 hexahedrons
0.01 Creating material table.
0.01 Creating three uniaxial models.
0.03 Writing n88 model file: test25a_strain_xx.n88model
0.14 Writing n88 model file: test25a_strain_yy.n88model
0.25 Writing n88 model file: test25a_strain_zz.n88model
0.34 Creating three symshear models.
0.35 Writing n88 model file: test25a_strain_yz.n88model
0.46 Writing n88 model file: test25a_strain_zx.n88model
0.57 Writing n88 model file: test25a_strain_xy.n88model
0.66 Calling solver on test25a_strain_xx.n88model
2.20 Calling solver on test25a_strain_yy.n88model
3.76 Calling solver on test25a_strain_zz.n88model
5.23 Calling solver on test25a_strain_yz.n88model
6.59 Calling solver on test25a_strain_zx.n88model
7.87 Calling solver on test25a_strain_xy.n88model
9.05 Reading n88 model file: test25a_strain_xx.n88model
9.07 Reading n88 model file: test25a_strain_yy.n88model
9.08 Reading n88 model file: test25a_strain_zz.n88model
9.09 Reading n88 model file: test25a_strain_yz.n88model
9.10 Reading n88 model file: test25a_strain_zx.n88model
9.11 Reading n88 model file: test25a_strain_xy.n88model

Volume fraction = 0.45357

Apparent stiffness matrix in specimen coordinate system

[[1571.653 540.033 513.822 7.53 -121.22 -57.959]
[540.033 2029.046 469.974 78.591 -53.69 -50.673]
[513.822 469.974 1803.998 20.377 -57.014 -15.761]
[7.53 78.591 20.377 734.405 -23.127 -36.557]
[-121.22 -53.69 -57.014 -23.127 627.396 13.969]
[-57.959 -50.673 -15.761 -36.557 13.969 745.749]]

Apparent compliance matrix in specimen coordinate system

[[7.570e-04 -1.586e-04 -1.704e-04 1.977e-05 1.170e-04 4.323e-05]
[-1.586e-04 5.610e-04 -1.000e-04 -5.441e-05 5.808e-06 2.090e-05]
[-1.704e-04 -1.000e-04 6.294e-04 -4.883e-06 1.569e-05 -7.273e-06]
[1.977e-05 -5.441e-05 -4.883e-06 1.372e-03 4.787e-05 6.410e-05]
[1.170e-04 5.808e-06 1.569e-05 4.787e-05 1.621e-03 -1.819e-05]
[4.323e-05 2.090e-05 -7.273e-06 6.410e-05 -1.819e-05 1.349e-03]]

Material parameters in specimen coordinate system

Exx = 1320.98
Eyy = 1782.54
Ezz = 1588.79
Gyz = 728.81
Gzx = 617.06
Gxy = 741.27

Faim Finite Element Analysis Manual 151 / 206

nu_yx = 0.28270
nu_zx = 0.27081
nu_xy = 0.20950
nu_zy = 0.15888
nu_xz = 0.22516
nu_yz = 0.17825

Optimum rotation matrix R:

[[0.32957 -0.83991 -0.4312]
[0.30346 0.52671 -0.79403]
[0.89404 0.13084 0.42846]]

Apparent stiffness matrix in best orthotropic coordinate system

[[2197.117 466.121 496.104 30.725 39.277 6.441]
[466.121 1852.499 506.856 32.259 14.028 -0.103]
[496.104 506.856 1464.576 -5.755 -28.362 14.264]
[30.725 32.259 -5.755 650.075 -35.665 -15.051]
[39.277 14.028 -28.362 -35.665 697.661 8.234]
[6.441 -0.103 14.264 -15.051 8.234 705.066]]

Apparent compliance matrix in best orthotropic coordinate system

[[5.068e-04 -8.804e-05 -1.419e-04 -2.273e-05 -3.367e-05 -1.863e-06]
[-8.804e-05 6.126e-04 -1.826e-04 -2.865e-05 -1.630e-05 4.167e-06]
[-1.419e-04 -1.826e-04 7.952e-04 2.496e-05 4.544e-05 -1.482e-05]
[-2.273e-05 -2.865e-05 2.496e-05 1.546e-03 8.154e-05 3.175e-05]
[-3.367e-05 -1.630e-05 4.544e-05 8.154e-05 1.442e-03 -1.571e-05]
[-1.863e-06 4.167e-06 -1.482e-05 3.175e-05 -1.571e-05 1.419e-03]]

Material parameters in best orthotropic coordinate system

Exx = 1973.20
Eyy = 1632.50
Ezz = 1257.55
Gyz = 646.74
Gzx = 693.58
Gxy = 704.48

nu_yx = 0.14372
nu_zx = 0.17848
nu_xy = 0.17371
nu_zy = 0.22968
nu_xz = 0.28004
nu_yz = 0.29816

9.47 Done.

8.3 Pistoia Failure Load Estimate

The failure load for a linear elastic model is based on the work by Dr. Walter Pistoia (Pistoia 2001a and 2001b). Numerics88
provides a tool, n88pistoia that can be used to carry out these calculations. In general, it is more accurate and preferable to
solve an elastoplastic model in order to obtain failure loads. However, we include the Pistoia tool, mostly for those who wish
to compare current data to older results on which a Pistoia analysis was done.

Faim Finite Element Analysis Manual 152 / 206

The basic principal is that failure load is defined as the load at which a pre-defined volume of tissue (percentage critical volume)
exceeds a pre-defined Energy Equivalent Strain (critical EES). Typical values are 2.0% and 0.007, respectively. It should be
noted that the so-called Pistoia criterion is not a standard failure criteria used in classical mechanics of materials; however, it has
been extensively validated with experimental testing of cadaver bones, and it is the most widely used and accepted criterion for
image-based linear FE modelling.

The first sub-table contains the failure load information (the sub-table is denoted by a series of horizontal dots). The calculation
of the failure load requires post-processing the EES for each element of the solved linear FE model. After ordering the EES
in a histogram, the actual strain at the critical volume threshold (e.g., 2%) is determined and reported in the table as EES at
vol_crit. As this is a linear FE model, a scale-factor for this EES can be determined relative to the critical EES, and this is
captured in a defined factor. A table of factors is provided at the bottom of the Pistoia Failure Load Estimate table, and the factor
associated with the defined critical volume and critical EES is reported specifically in this first sub-table (other values of critical
volume and critical EES could be applied if necessary using the alternative table factors). Knowing the total reaction force of the
solved model (usually RFz) and the actual EES value at the critical volume, a linear factor can be applied to estimate the failure
load: failure load = RFz × factor .

Note
Although a similar process can be applied to determine the torsional failure load (and is reported as torsional failure load) there
have not been any experimental validations of this technique published to date. It is not recommended to use the reported
torsional failure load until experimental validation is completed. Nevertheless, it is provided here for the users’ convenience.

The second sub-table contains a summary of the axial and torsional stiffness values, and these are identical to the previous
corresponding tables. For example, RFz from node set 1 has already been reported in Nodal Forces as total F_z_. They are
reported again in this table for convenience.

Important
All failure loads are calculated assuming that axial compression or torsion was applied along the z-axis in the Data
Frame.

The third sub-table contains a summary of the histogram results for the analysis of EES. All materials defined in the model
are pooled for this histogram (i.e., cortical bone and trabecular bone), and it is the basis for determining the EES at the critical
volume used for the failure load calculation. It is important to note that the user has the option to pre-define a material that is to
be excluded from the failure load analysis, and that excluded material is reported at the top of the table (Excluded material
id). This is useful, for example, if the FE model contains platens that should not be included in the failure load analysis (i.e., the
failure load of the platens are not of interest).

The fourth sub-table contains a summary of the number of elements that exceed critical EES, and is broken down by material
definition. This information allows the user to determine, for example, whether failure was based on cortical bone versus
trabecular bone.

The fifth sub-table contains factors that could be used (by user hand calculation) to determine the estimated failure load for
different critical volumes or critical EES.

Table 1: Pistoia Failure Load Estimate

Pistoia Criterion for Energy-Equivalent-Strain (EES)
(*) Results valid for linear, isotropic model only.
(*) Warning: Torsion failure load not validated. Caution!

Number of elements in analysis: 349829
Excluded material id: none
...
Critical volume (%): 2.0000
Critical EES: 0.0070
EES at vol_crit: 0.0131
Factor (from table): 0.5332E+00

Faim Finite Element Analysis Manual 153 / 206

Failure load (RFz * factor) [N]: -0.3248E+04 v1
Torsional failure load (Tz * factor) [Nmm]: 0.9764E-03

Axial and Torsional Stiffness:
...
RFz (node set 1) [N]: -0.6091E+04
Uz (node set 1) [mm]: -0.9020E-01
Axial stiffness [N/mm]: 0.6753E+05 v2
Tz (node set 1) [Nmm]: 0.1831E-02
Rotz (node set 1) [rad]: -0.1787E-03
Torsional stiffness [Nmm/rad]: -0.1025E+02 v3

Distribution of energy-equivalent-strain: EES = sqrt(2U/E).
...

EES
average 0.6135E-02
std_dev 0.3210E-02
minimum 0.1332E-07
maximum 0.3725E-01
skewness 0.4787E+00
kurtosis 0.9386E+00
median 0.6089E-02

Distribution of failed materials.
...

material # els %
127 1454 20.7803
100 5543 79.2197 v4

---------- ---------- ----------
total 6997 100.0000

Factor table:

crit_vol | crit_ees
% # vox | 0.0050 0.0060 0.0070 0.0080 0.0090

------ -------- | ---------- ---------- ---------- ---------- ----------
1.00 349829 | 0.3400E+00 0.4080E+00 0.4759E+00 0.5439E+00 0.6119E+00
2.00 699658 | 0.3809E+00 0.4570E+00 0.5332E+00 0.6094E+00 0.6855E+00
3.00 1049487 | 0.4071E+00 0.4886E+00 0.5700E+00 0.6514E+00 0.7329E+00
4.00 1399316 | 0.4274E+00 0.5129E+00 0.5984E+00 0.6838E+00 0.7693E+00
5.00 1749145 | 0.4444E+00 0.5333E+00 0.6222E+00 0.7111E+00 0.8000E+00
6.00 2098974 | 0.4582E+00 0.5498E+00 0.6414E+00 0.7331E+00 0.8247E+00
7.00 2448803 | 0.4703E+00 0.5644E+00 0.6585E+00 0.7525E+00 0.8466E+00

v1 Estimated failure load of the bone in uniaxial compression, given the critical volume of 2% and critical EES of 0.0070.v2 Calculated based on the total Fz (also termed RFz) of node set 1 divided by the average displacement Uz of the surface
defined by node set 1.v3 Calculated based on the total Tz of node set 1 divided by the average displacement Uz of the surface defined by node set
1.v4 Indicates that approximately 79% of the failed voxels comprising the 2% critical volume were in the trabecular tissue,
while only 21% were in the cortical tissue.

Faim Finite Element Analysis Manual 154 / 206

Chapter 9

Command Reference

Table 9.1: List of Faim command-line programs

Module Description
faim Convenience utility that calls n88solver, n88derivedfields and n88postfaim in

sequence.
n88coarsen Reduce the size of finite element models so that an approximate solution can be

obtained quicker and with less memory.
n88copymodel Copy, convert or compress a finite element model file.
n88compress Compress a finite element model file in-place.

n88derivedfields Calculate additional field values (forces, stress, strain, etc) that are not generated by
n88solver.

n88directmechanics Perform direct mechanics calculations.
88evaluate Calculate some values that indicate the correctness of the solution.
n88extractfields Extracts specified solution fields as tabular text data.
n88extractsets Extract node sets, element sets and constraint sets and write them to VTK PolyData

(.vtp) files.
n88interpolatesolution Copies and interpolates a solution from a solved reduced-resolution n88model file,

produced using n88coarsen, into the original n88model file.
n88modelgenerator Generate a finite element model from a segmented 3D image.
n88modelinfo Print summary information for a Numerics88 FE model file.
n88pistoia Estimate failure loads from a linear model.
n88postfaim Generate tables of standard post-processing quantities.
n88solver (_slt, _sla and _spt) Solvers suitable for small-strain models with linear elastic material definitions (_el)

or with non-linear elastoplastic material definitions (_ep).
n88tabulate Tabulate values from n88postfaim output files for importing into a spreadsheet.

9.1 faim

A convenience utility that calls n88solver, n88derivedfields and n88postfaim in sequence on the specified model file.

The analysis file produced by n88postfaim will be named after the input file, with "_analysis.txt" replacing the extension of the
input file.

The most appropriate solver for your input model will be used.

• If your model contains elastoplastic material definitions, n88solver_spt will be used.

Faim Finite Element Analysis Manual 155 / 206

• If your model contains exactly one material array with length equal to the number of elements, n88solver_sla will be
used.

• In all other cases, n88solver_slt will be used.

The analysis file produced by n88postfaim will be named after the input file, with “_analysis.txt” replacing the extension of the
input file.

The command line arguments of faim are listed below. As they are passed through to the programs doing the work, they are
grouped by program that they are passed to. In each case the options are identical to those of the program doing the work.

Arguments passed to n88solver

convergence_measure
convergence_tolerance
device
engine
license_check
maximum_iterations
maximum_plastic_iterations
quiet
restart
threads
threshold_window
plastic_threshold_window

For details, refer to n88solver.

Arguments passed to n88derivedfields

device
engine
quiet
threads

For details, refer to n88derivedfields.

Arguments passed to n88postfaim

element_sets
node_sets
quiet
rotation_center

For details, refer to n88postfaim.

Table 9.2: faim arguments not passed to any program

Option Description
-h, --help Show help and exit.
--use_coarsen Generate a coarsened model if possible to calculate an initial estimate of the

solution. For certain models, this may speed-up finding the final solution.
--no_post Do not run the postprocessor.

Faim Finite Element Analysis Manual 156 / 206

9.2 n88coarsen

Description

This tool is used to reduce the size of finite element models so that an approximate solution can be obtained quickly and with
less memory. It operates either directly on FE models, or on segmented image data.

Usage

n88coarsen [-h] [--material_averaging {linear,homminga_density}]
input_file output_file

When operating on n88model files, it will increase the size of elements by a factor of 2 in each dimension (thus a factor of 8 in
volume), resulting in fewer larger elements. The output model is coarser: the coarsening is always done by adding volume to
make larger elements, never by removing material, so that as compared with the input model, the output model always has greater
or equal volume. Material properties are averaged over all the input elements corresponding to each output element. Empty space
is treated as having identically zero stiffness, wherever empty space in the input is encompassed within an output element. All
essential features of the model, including boundary conditions, applied forces, and post-processing sets, are translated to the new
coarser mesh.

When the input is an image, the resolution is reduced by exactly 1/2 in each linear dimension. Each 2x2x2 cube in the input
becomes a single voxel in the output, with value equal to the maximum in the corresponding input 2x2x2. This operation does
not average input values, since it does not make any sense to average segmentation values, which are just labels. Instead, it takes
the maximum value over all the input voxels corresponding to an output voxel. This is a somewhat arbitrary choice. For this
reason it is preferable to use n88coarsen directly on n88model files, where material averaging is possible.

SUPPORTED INPUT FORMATS

• Numerics88 model file (.n88model)

• DICOM (a directory)

• Scanco AIM (.aim)

• MetaImage (.mha or .mhd)

• VTK XML ImageData (.vti)

SUPPORTED OUTPUT FORMATS

• Numerics88 model file (.n88model). If the input is an n88model file.

• VTK XML ImageData (.vti). If the input is an image.

Table 9.3: n88coarsen optional arguments

Option Description
-h, --help Show help and exit.
--material_averaging Determine how the material averaging is done. If linear, then stress-strain

matrices will be linearly averaged. If homminga_density, then the stress- strain
matrices are first scaled to a density using the Homminga formula (i.e. raised to the
power 1/1.7), then averaged, then converted back the stiffness by raising to the power
1.7. homminga_density nearly always gives more accurate approximations than
linear.

Faim Finite Element Analysis Manual 157 / 206

9.3 n88copymodel

Description

Copy, convert or compress a finite element model file.

Usage

n88copymodel [-h] [--compress] input [input2] output

File formats are automatically identified by their extensions. Ambiguous input file extensions are resolved by examining the file.

Two input files are allowed if the first is a FAIM version 5 input file (.inp), and the second is a FAIM version 5 output file
(.dat). This will create a complete, solved n88model file. Either .inp or .dat can also be converted individually, but in
the case of .dat files, the resulting n88model file will be incomplete, as the .dat file alone does not contain either material
definitions or constraints; however, it can be rendered and processed by n88postfaim, but not re-solved.

SUPPORTED INPUT FORMATS

• Numerics88 model file (.n88model)

• Abaqus input file (.inp)

• Faim version 5 input file (.inp)

• Faim version 5 output file (.dat)

SUPPORTED OUTPUT FORMATS

• Numerics88 model file (.n88model)

• Abaqus input file (.inp)

• VTK XML Unstructured Grid file (.vtu)

Tip
VTK XML Unstructured Grid files can be read be and rendered by ParaView, even without the Numerics88 plugins. They
include the complete geometry, plus any solution fields, but lack any constraint or material information.

Table 9.4: n88copymodel optional arguments

Option Description
-h, --help Show help and exit.
--compress, -c Use compression when writing the output file if the file format supports it.

Compressed n88model files do not need to be uncompressed in order to use them:
they can be used in all cases exactly like uncompressed files. Compressed files may
be slower to read, and are particularly slower to write.

Note
If you compress an n88model file, and then run either n88solver or n88derivedfields on it, it will end up in a
mixed state, where the original data is compressed, but the new data added by n88solver or n88derivedfields is
uncompressed. There is nothing wrong with this as the file is still completely valid and useable. However, usually if compression
is important, one wants the entire file data compressed. Therefore, we recommend not compressing the file until you have
completed all the normal processing steps on it. It is of course possible to convert a partially compressed n88model file to a
fully compressed n88model file by running n88copymodel or n88compress on it again.

Faim Finite Element Analysis Manual 158 / 206

See also the section Converting Faim version 5 file formats.

9.4 n88compress

n88compress FILENAME

is an alias for

n88copymodel --compress FILENAME FILENAME

Refer to the documentation for n88copymodel.

9.5 n88derivedfields

Description

Calculates additional field values (forces, stress, strain, etc) that are not generated by n88solver.

For discussion of use, see the section on using n88derivedfields in the Post-processing chapter.

Usage

n88derivedfields [options] input_file

Arguments

Table 9.5: n88derivedfields arguments

Argument Description
--help [-h] Print help and exit.
--version[-v] Print version information.
--quiet [-q] Suppress output to terminal (except for error messages).
--precision arg (=single) Set the floating point precision used. Values: single, mixed, double.

9.6 n88directmechanics

Description

Perform direct mechanics calculations. See Section 8.2 in the Special Topics chapter.

Usage

n88directmechanics [-h] [-c FILE] [--generate] [--solve] [--analyze]
[--material_table {homogeneous,homminga}]
[--youngs_modulus YOUNGS_MODULUS]
[--poissons_ratio POISSONS_RATIO]
[--orthotropic_parameters ORTHOTROPIC_PARAMETERS]
[--homminga_maximum_material_id HOMMINGA_MAXIMUM_MATERIAL_ID]
[--homminga_modulus_exponent HOMMINGA_MODULUS_EXPONENT]
[--connectivity_filter {on,off}]
input_file

Faim Finite Element Analysis Manual 159 / 206

Table 9.6: n88directmechanics input arguments

Option Description
input_file An image file with segmented data. Note that the file name of the original image file

should be used even when the only action is --solve and/or --analyze; the
n88model file names will be derived from the image file name. Supported input
formats:
- DICOM (a directory)
- Scanco AIM (.aim)
- MetaImage (.mha or .mhd)
- VTK XML ImageData (.vti)

Table 9.7: n88directmechanics action arguments

Option Description
--generate Generate models. (Generates 6 n88model files.)
--solve Solve models. (n88model files are updated with solutions.)
--analyze Perform direct mechanics analysis on solved files.

Multiple action arguments may be specified. If no action argument is specified, it is equivalent to specifying them all.

n88directmechanics material specification arguments

material_table
youngs_modulus
poissons_ratio
orthotropic_parameters
homminga_maximum_material_id
homminga_modulus_exponent

These arguments are identical to the equivalent arguments of n88modelgenerator. See Material specification parameters.

Table 9.8: n88directmechanics optional arguments

Option Description
-h, --help Show help and exit.
-c FILE, --config FILE Specify a configuration file. The configuration file may specify any arguments that

take a value, one per line, in the format name=value (leave the double dash "--" off of
the argument name). This format is identical to n88modelgenerator. See Section 2.1.

n88directmechanics additional parameters

connectivity_filter
spacing

These arguments are identical to the equivalent arguments of n88modelgenerator. See Input image parameters.

Faim Finite Element Analysis Manual 160 / 206

Tip
There are no options passed to the solver. If this is required, run n88directmechanics with the --generate ac-
tion, then manually run n88solver on each of the resulting n88model files, using the desired solver options, then run
n88directmechanics again with the --analyze action.

9.7 n88evaluate

Description

A tool to evaluate the quality of solutions.

For discussion of use, see the section on using evaluating solution quality and the section section on using evaluating nonlinear
solution quality.

Usage

n88evaluate [options] input_file

Arguments

Table 9.9: n88evaluate arguments

Argument Description
--help [-h] Print help and exit.

--sparse [-s] Use sparse matrices for calculation. This is the default, but requires that scipy be
installed.

--dense [-t] Use dense matrices for calculation. This does not require scipy to be installed, but as
the memory requirements scale as the square of the number of degrees of freedom in
the problem, this is feasible only for very small problems.

9.8 n88extractfields

Description

Extracts specified solution fields as tabular text data.

Usage

n88extractfields [-h] [--output_file OUTPUT_FILE] fields input_file

Faim Finite Element Analysis Manual 161 / 206

Table 9.10: n88extractfields positional arguments

Option Description
fields A comma-delimited list of names of solution fields to extract. May be the name of

either a solution node value (e.g. “Displacement”) or a solution element value (e.g.
“Stress”; see also Calculating additional solution fields with n88derivedfields)
Additionally, “NodeNumber”, “ElementNumber”, “MaterialID”,
“NodeCoordinates”, “ElementCoordinates” or “Topology” can be specified. Element
coordinates are the centers of the elements. Topology gives for each element the 8
node numbers of the nodes constituting the element. The order is as in the
n88model file, refer to the file specification. All fields must be the same length,
which practically means that they must either be all node values or all element
values.

input The model file.

Table 9.11: n88extractfields optional arguments

Option Description
-h, --help Show help and exit.
--output_file OUTPUT_FILE, -o
OUTPUT_FILE

Output file. If not specified, output will go to STDOUT.

Examples

This will extract the displacement values as an N×3 array, where N is the number of nodes:

$ n88extractfields Displacement mymodel.n88model
-0.00136573 -0.00136573 0.0
-0.000770869 -0.00142601 0.0
-0.000218384 -0.00141035 0.0
0.000218384 -0.00141035 0.0
0.000770869 -0.00142601 0.0
0.00136573 -0.00136573 0.0
-0.00142601 -0.000770869 0.0
...

This example will extract both element number and corresponding stress. As the stress is 6-valued, this makes a total of 7 values
per row of output:

$ n88extractfields ElementNumber,Stress mymodel.n88model
1 -0.752387 -0.752387 -69.0185 0.965844 0.965844 ←↩

-0.00933552
2 -4.98979 -1.50565 -73.2319 0.629349 0.690826 ←↩

1.61737
3 -6.35569 -0.494144 -74.5778 0.486541 -4.27155e-16 ←↩

-5.6954e-16
4 -4.98979 -1.50565 -73.2319 0.629349 -0.690826 ←↩

-1.61737
5 -0.752385 -0.752386 -69.0185 0.965844 -0.965844 ←↩

0.00933552
6 -1.50565 -4.98979 -73.2319 0.690826 0.629349 ←↩

1.61737
7 -1.50565 -4.98979 -73.2319 0.690826 -0.62934
...

Faim Finite Element Analysis Manual 162 / 206

9.9 n88extractsets

Description

Extract node sets, element sets and constraint sets and write them to VTK PolyData (.vtp) files which can be opened with
ParaView. This is mostly useful for visualizing sets, boundary conditions and applied forces. For nodes sets and constraints,
these files will consist of a collection of vertices.

Usage

n88extractsets [-h] [--constraints] [--node_sets] [--element_sets] input

Table 9.12: n88extractsets arguments

Option Description
-h, --help show this help message and exit
--constraints, -C Extract constraints.
--node_sets, -N Extract node sets.
--element_sets, -E Extract element sets.

If no arguments are specified, all types of sets will be extracted.

Warning
This utility will generate file names based on the names of the sets, and will overwrite existing files with the same names
without warning.

9.10 n88interpolatesolution

Description

Copies and interpolates a solution from a solved reduced-resolution n88model file, produced using n88coarsen, into the original
n88model file. This may help to obtain faster solutions.

Usage

n88interpolatesolution [-h] full_model reduced_model

Warning
For linear models only.

9.11 n88modelgenerator

Description

Generates a finite element model from a segmented 3D image.

Refer to the chapter on using n88modelgenerator.

Usage

Faim Finite Element Analysis Manual 163 / 206

n88modelgenerator [options] input_file [output_file]

Supported input image file formats

n88modelgenerator currently supports the following input formats:

• DICOM (automatically selected when a directory is given as the input),

• Scanco .aim files,

• ITK MetaImage files (.mha) or (.mhd),

• VTK XML Image Data files (.vti),

• existing Numerics88 Model file (.n88model)

Note
There are some limitations when reading DICOM files. In particular, encapsulated format cannot be read. It is sometimes not
possible to determine the z-spacing from DICOM files. In this case use the option spacing.

Note
If an n88model file is provided as an input file, the mesh (i.e. the points and elements) will be taken from the input, as well as
any possible solution fields. A new material table and new constraints will be generated. This is useful for incremental loading
tests of nonlinear models, as it allows the boundary conditions to be updated while preserving an existing solution.

Supported output file formats

The standard output format of n88modelgenerator is an n88model file (see Appendix B). If you specify an output file
with extension .n88model, the n88model file format will be used. This is the default output type, and if no output file is
specified, an output file will be generated from the stem of the input file, with the extension .n88model appended.

n88modelgenerator also supports the output of Abaqus input files. An Abaqus input file will be generated whenever an
output file with extension .inp is specified.

Input and output parameters

Input and output parameters specify the files that are used for input and output.

Table 9.13: n88modelgenerator Input and Output Parameters

Argument Description
input_file Specify the name of the input file. Note that it is not necessary to explicitly use

“--input_file” on the command line, as the first positional argument (i.e. the first
argument not starting with a dash), is taken to be the input file.

output_file Specify the name of the output file. If not specified, a default output file name will be
used, which is of the form [input]_[test_type].n88model . Note that it is
not necessary to explicitly use “--output_file” on the command line even if you want
to specify the output file name, as the second positional argument, (i.e. the second
argument not starting with a dash), if present, is taken to be the output file. However
the type of output file is determined by the extension of output_file, therefore if
output different than the default type (n88model) is desired, the output file must be
explicitly specified.

Faim Finite Element Analysis Manual 164 / 206

Input image parameters

Table 9.14: n88modelgenerator Input Image Parameters

Argument Description
spacing Force the spacing of the input image. This is sometimes required for DICOM files,

for which the z-spacing sometimes cannot be determined. Values should be given as
a comma-delimited list of x,y,z values. e.g. 0.5,0.5,0.5 .

connectivity_filter Enable/disable connectivity filtering which extracts only the largest connected object
in the input image. See Ensuring connectivity in the chapter about vtkbone for a
discussion of this issue. Valid values are on, off and warn. The default is on.

Test configuration parameters

Test configuration parameters define the mechanical test that will be applied to the object in the image.

Table 9.15: n88modelgenerator Test Configuration Parameters

Argument Description
test Specify test type. Valid values are uniaxial, axial, confined, bending,

torsion, symshear and dshear. See Standard Tests.

test_axis Specify the test axis. See Test Orientation. Valid values are x, y, and z. The default is
z.

normal_strain For a compression type test, specifies an apparent level strain. Negative values
correspond to compression. Strain is the default if neither strain nor displacement are
specified. Default -0.01, corresponding to 1% compressive strain.

shear_strain For a symshear test, this sets the apparent engineering shear strain applied to the
model. Unitless. Default 0.01.

strain Shortened equivalent of either normal_strain or shear_strain, depending on the test
type.

displacement Specify an applied displacement (with units of length) for a compression type test.
Negative values correspond to compression. This parameter is exclusive with
normal_strain: one or the other may be used, but not both.

pin Fully define the constraints for a uniaxial model by adding an arbitrary pinned point
to prevent lateral translation, and a second partially pinned point to prevent lateral
rotation. If this option is off, the system of equations for a uniaxial test is singular.
Faim can solve it regardless, and will in fact typically solve it faster. This option is
ignored for test types other than uniaxial. Valid values are off, center, corner
and on. The value corner adds a pin at the element with the minimum z,y,x
coordinates in the Test Frame (i.e. select by minimum z, then by minimum y, then by
minimum x). center adds a pin at the element closest to the center x,y position in
the Test Frame. (The z coordinate is not considered, unless two elements are equally
close to the x,y center, in which case the one with smallest z is selected.) The value
on is equivalent to center. Default is off.

Faim Finite Element Analysis Manual 165 / 206

Table 9.15: (continued)

Argument Description
central_axis The x,y coordinates (in the Test Frame) of the central axis, which is parallel to the z

axis (in the Test Frame). Example: 0,0 . Alternatively, you can specify
center_of_mass or center_of_bounds. The default is
center_of_mass. The central axis is used in bending and torsion tests.

bending_angle The degree of tilt between the top and bottom surfaces in a bending test. Units are
degrees. The default is 1º.

neutral_axis_angle The angle of the neutral axis in the x,y plane (in the Test Frame) in a bending test. 0º
is parallel to the x-axis. Units are degrees. Default is 90º, parallel to the y-axis.

shear_vector The amount of shear displacement of the top surface as a vector in the x,y plane (in
the Test Frame) for a dshear test. Units are length units if scale_shear_to_height is
off, otherwise a unitless ratio. Default is 0.01,0 .

scale_shear_to_height If on, shear_vector will be scaled by the height of the model extent (in the z
direction in the Test Frame) to determine the shear displacement applied for a dshear
test. Valid values are on and off. Default is on.

twist_angle Amount of rotation of the top surface in a torsion test. Units are degrees. Default is
1º.

Surface detection parameters

Surface detection parameters modify how the top and bottom surfaces of the object image are identified. For most test types, the
principle boundary conditions are applied to these two surfaces. If not specified, by default these surfaces are identified as all
nodes (or elements) at the top or bottom extent of the input.

Table 9.16: n88modelgenerator Surface Detection Parameters

Argument Description
top_surface Specify method of selecting top surface. Valid values are intersection and

visible. See Uneven surfaces.

bottom_surface Specify method of selecting bottom surface. Valid values are intersection and
visible. See Uneven surfaces.

top_surface_maximum_depth Specify the maximum depth for identifying the top surface. Only applies if
top_surface = visible. If unspecified, depth is unlimited. Depth is measured
from the top boundary of the volume.

bottom_surface_maximum_depth Specify the maximum depth for identifying the bottom surface. Only applies if
bottom_surface = visible. If unspecified, depth is unlimited. Depth is
measured (upwards) from the bottom boundary of the volume.

top_constraint_material_id Apply boundary conditions at the top surface only to cells and nodes of the specified
material ID.

bottom_constraint_material_id Apply boundary conditions at the bottom surface only to cells and nodes of the
specified material ID.

Faim Finite Element Analysis Manual 166 / 206

Material specification parameters

Material specification parameters are used to specify material definitions, and to select a material table that maps material IDs to
material definitions.

Table 9.17: n88modelgenerator Material Specification Parameters

Argument Description
poissons_ratio Specify isotropic Poisson’s ratio. The default is 0.3 .

youngs_modulus Specify isotropic Young’s modulus. The default is 6829.

orthotropic_parameters Specify orthotropic parameters as Ex,Ey,Ez,νyz,νzx,νxy,Gyz,Gzx,Gxy . If not set,
isotropic parameters will be assumed. Important: There are two common
conventions for ordering the mixed index quantities ν ij and Gij. Numerics88
software uses the ordering YZ, ZX, XY. It is important to observe this when
specifying orthotropic properties in n88modelgenerator, as these are input in
the form of an ordered list.

plasticity Specify an elastoplastic yield criterion. Specify as several values separated by
commas. The first value is an elastoplastic yield criterion name; subsequent values
are numeric arguments appropriate to the method.
Supported methods:
VonMises,Y : Y is the yield strength. Refer to von Mises yield criterion.
MohrCoulomb,YT,YC : YT is the yield strength in tension and YC is the yield
strength in compression. Refer to Mohr-Coulomb yield criterion.

material_table Specify method for generating material table. Valid values are homogeneous and
homminga. homogeneous assigns the same material to all material IDs.
homminga generates a table of materials according to Homminga et al. Refer to
Homminga material table for details.

homminga_maximum_material_-
id

Specify the maximum material ID used in Homminga density to modulus
conversion. The default is 127.

homminga_modulus_exponent Specify exponent used in Homminga density to modulus conversion. The default is
1.7 .

material_definitions Specify a material definitions file for advanced material specification. If specified, all
other material specification arguments will be ignored. Refer to the section material
definitions file in the chapter on Preparing Finite Element Models With
n88modelgenerator.

Solver parameters

Solver parameters affect the execution of the solver. They are independent of the model creation, and are specific to the solver
used. If given as arguments to n88modelgenerator, they will be stored in the n88model file. However for most purposes,
it is better to leave these out of the n88model file and either use the defaults as selected by the solver, or else to specify them as
command line arguments directly to the solver. See n88solver.

Faim Finite Element Analysis Manual 167 / 206

Table 9.18: n88modelgenerator Solver Parameters

Argument Description
convergence_tolerance Specify convergence tolerance for conjugate gradient iterations. If not specified a

default value will be used. See Generating the displacements with n88solver.

maximum_iterations Specify the maximum number of conjugate gradient iterations. If not specified a
default value will be used. The default is 30000. See Generating the displacements
with n88solver.

plastic_convergence_tolerance Specify convergence tolerance for plastic iterations. If not specified a default value
will be used.

maximum_plastic_iterations Specify the maximum number of plastic iterations. If not specified a default value
will be used. The default is 100.

9.12 n88modelinfo

Description

Print summary information for a Numerics88 finite element model file.

Usage

n88modelinfo [-h] [--active] [--history] [--log] [--materials]
[--parts] [--node_sets] [--element_sets] [--sets]
[--constraints] [--problems] [--solutions]
input_file

Table 9.19: n88modelinfo positional arguments

Option Description
input_file The .n88model file to read.

Table 9.20: n88modelinfo action arguments:

Option Description
--active List active solution, problem and part.
--history Show history.
--log Show log.
--materials List defined materials.
--parts Show parts.
--node_sets Show nodesets.
--element_sets Show elementsets.
--sets Show both node and element sets. (Equivalent to --node_sets and --element_sets.)
--constraints Show constraints.
--problems Show problems.
--solutions Show solutions.

Faim Finite Element Analysis Manual 168 / 206

Multiple action arguments may be specified. If no action argument is specified, it is equivalent to specifying them all.

Table 9.21: n88modelinfo optional arguments

Option Description
-h, --help Show help and exit.

9.13 n88pistoia

Description

Calculate Pistoia yield critera. This is a method if estimating yield strength from linear solutions. In general, it would be
preferable to use a non-linear elastoplastic model to calculate yield strengths. This utility is provided mostly for comparing with
older results.

For discussion of use, see the section on the Pistoia failure load estimate in the special topics chapter.

Note that n88pistoia is implemented in python (in tools/pistoia.py), so you can copy it and modify it should you
wish to modify the analysis.

Usage

n88pistoia [options] input_file

Arguments

Table 9.22: n88pistoia arguments

Argument Description
--help [-h] Print help and exit.
--output_file [-o] arg Specify an output file. If no output file is specified, output will go to STDOUT.
--constraint [-n] arg Specify the constraint (i.e. boundary condition or applied load) to use for analysis.

This is the surface to which forces are applied. The default ("top_displacement") will
work for models generated with n88modelgenerator.

--rotation_center [-c] arg Specify the spatial center used for calculation of angular quantities. The argument
must be given as a triplet of coordinates. If not specified, the value will be read from
the input file. If not available, no angular quantities will be calculated.

--include [-i] arg Only elements with the specified material IDs will be included in the calculation.
Multiple IDs can be specified in a comma-delimited list (e.g. 100,101,105).

--exclude [-e] arg All elements with the specified material IDs will be excluded from the calculation.
Multiple IDs can be specified in a comma-delimited list (e.g. 100,101,105).

--critical_volume arg Specify the fixed critical volume (as percent) (e.g. 2.0).
--critical_strain arg Specify the fixed critical strain (e.g. 0.007).

9.14 n88postfaim

Description

Faim Finite Element Analysis Manual 169 / 206

Generate tables of standard post-processing quantities.

For discussion of use, see the section on using n88postfaim in the post-processing chapter.

Note that n88postfaim is implemented in python (in tools/postfaim.py), so you can copy it and modify it should you
wish to modify the analysis.

Usage

n88postfaim [options] input_file

Arguments

Table 9.23: n88postfaim arguments

Argument Description
--help [-h] Print help and exit.
--output_file [-o] arg Specify an output file. If no output file is specified, output will go to STDOUT.
--node_sets [-N] arg Specify the node sets to use for analysis. The argument should be a list of node set

names, separated by commas. If not specified, the value will be read from the input
file.

--element_sets [-E] arg Specify the element sets to use for analysis. The argument should be a list of element
set names, separated by commas. Each node set must be matched by the
corresponding set of elements. If not specified, the value will be read from the input
file.

--sets [-s] arg A convenience option that sets both node_sets and elements_sets. This is only useful
if corresponding node and element sets are identically named.

--rotation_center [-c] arg Specify the spatial center used for calculation of angular quantities. The argument
must be given as a triplet of coordinates. If not specified, the value will be read from
the input file. If not available, no angular quantities will be calculated.

9.15 n88solver (_slt, _sla and _spt)

Description

n88solver_slt and n88solver_sla are solvers suitable for small-strain models with linear elastic material definitions.
n88solver_spt can solve nonlinear models containing elastoplastic material definitions.

n88solver_slt and n88solver_spt use material tables internally: they are most efficient when the number of defined
materials is substantially less than the number of elements in the model. This is the usual case. n88solver_sla is a special-
purpose solver that uses a material array internally: it is more efficient when the number of defined materials is comparable to
the number of elements. See Efficient Handling of Large Numbers of Material Definitions.

See the chapters on Solving Linear Problems and Solving Nonlinear Problems for discussion of use.

Usage

n88solver_slt [options] input_file
n88solver_sla [options] input_file
n88solver_spt [options] input_file

Arguments

Faim Finite Element Analysis Manual 170 / 206

Table 9.24: n88solver arguments

Argument Description
--help [-h] Print help and exit.
--version [-v] Print version information and exit.
--quiet [-q] Suppress output to terminal (except for error messages).

--license-check [-l] Print licensing information.

--engine [-g] arg (=mt) Set the solver engine. Valid values are mt for the multi-threaded CPU engine and nv
for the nVidia GPU engine. Note that a license from Numerics88 Solutions is
required to use the GPU engine.

--threads [-t] arg Set the number of threads for the mt engine. If not specified, the number of threads
will be set to one per CPU core on the system, or one thread per 2048 elements,
whichever is less.

--device [d] arg (=0) Set the nVidia CUDA device to use (applies only to nv solver). Multiple devices may
be specified in a comma delimited list.

--precision arg (=double) Set the floating point precision used. Values: single, mixed, double.

--restart [-r] Do not use the existing solution as initial value.

--convergence_measure [-m] arg
(=auto)

Set the convergence measure. See convergence measure in the section on solving
linear models. For linear models, if auto is selected, set will be used if a
convergence set is defined in the model; otherwise the fallback is dumax. For
elastoplastic models, the default is always dumax, even when a convergence set is
defined. Values: set, dumax, durms, auto.

--convergence_tolerance [-e] arg
(=1E-6)

Set the convergence tolerance.

-convergence_window [-w] arg Set the linear convergence window. Convergence is not considered reached until the
convergence measure remains below the threshold for at least this number of
consecutive iterations.

-plastic_convergence_window
[-W] arg

Set the plastic convergence window. Plastic convergence is not considered reached
until the convergence measure remains below the threshold for at least this number
of consecutive iterations.

--maximum_iterations [-n] arg
(=30000)

Set maximum number of linear iterations. Note that for elastoplastic models the
count of linear iterations is reset on each plastic iteration.
[-N] arg

--maximum_plastic_iterations arg
(=1000)

Set maximum number of plastic iterations.

--iterations_file -i arg Specify a file to output all iteration data.

The convergence_tolerance, maximum_iterations, and maximum_plastic_iterations may also be set in
the input file. If present in both the input file as well as specified on the command line as options to n88solver, the options on
the command line to n88solver take precedence.

Faim Finite Element Analysis Manual 171 / 206

9.16 n88tabulate

Description

Extract and tabulate values from n88postfaim output files. The result is suitable for importing into a spreadsheet.

Usage

n88tabulate [-h] [--variables VARIABLES] [--from FROM] [--header]
[--delimiter DELIMITER] [--output_file OUTPUT_FILE]
[input_files [input_files ...]]

Table 9.25: n88tabulate positional arguments

Option Description
input_files n88postfaim output files to process. Any number may be specified, and wildcard

expansion of * and ? is performed on systems where the shell does not do this.

Table 9.26: n88tabulate optional arguments

Option Description
-h, --help show this help message and exit
--variables VARIABLES, -V
VARIABLES

A list of the variables to extract from the input files. Separate variable names with
commas. See below for a list of valid variable names. If not specified all possible
variables will be selected (this makes for a very large table).

--from FROM, -f FROM Obtain the list of variables from the first line of a text file. The variable names may
be separated by any kind of delimiter (white space or commas). Note that an output
file (from n88tabulate, generated with the --header option) can be used as a
--from argument, in which case the same selection of variables will be used.

--header, -H Print a header line first. May be used even if no input files are specified.
--delimiter DELIMITER, -d
DELIMITER

Delimiter character to separate columns. Default is a tab (“\t”).

--output_file OUTPUT_FILE, -o
OUTPUT_FILE

Output file. If not specified, output will go to STDOUT.

For any variables not found in the analysis file, a dash (“-”) will be inserted into the output table.

Examples

In the following example, every possible variable will be extracted from every file ending in “_analysis.txt” in the directory. This
will result in a very large number of values. The output will be written to the file summary.txt.

n88tabulate -H -o summary.txt *_analysis.txt

In the following example, we request the total forces along the z direction on the first two node sets for two different analysis
files.

$ n88tabulate -H -V "filename,fz_ns1,fz_ns2" test25a_analysis.txt test42a_analysis.txt
filename fz_ns1 fz_ns2
test25a_uniaxial.n88model -0.1019E+02 0.1019E+02
test42a_uniaxial.n88model -0.4641E+02 0.4641E+02

The following example is exactly the same, but the output goes to a file.

Faim Finite Element Analysis Manual 172 / 206

n88tabulate -H -V "filename,fz_ns1,fz_ns2" -o summary.txt test25a_analysis.txt ←↩
test42a_analysis.txt

Now suppose we want the same selection of variables on a different analysis file, we could do the following. Notice that we are
getting the list of variables from the existing file summary.txt.

$ n88tabulate -H --from summary.txt test99a_analysis.txt
filename fz_ns1 fz_ns2
test99a_uniaxial.n88model -0.6442E+02 0.6442E+02

In the following example, we are interested in the strain energy density, and request some statistical values. We also use a comma
as the delimiter.

$ n88tabulate -H -d ’,’ -V "sed_avg,sed_stddev,sed_skew,sed_kurt" analysis.txt
sed_avg,sed_stddev,sed_skew,sed_kurt
0.2990E+00,0.1127E+00,-0.1512E+01,0.8999E+00

Variables

In the variable list, certain variables can take one or more numeric indices. This is denoted with %. For example, for id_mat%m,
actual variable names are id_mat1 for the first defined material, id_mat2 for the second defined material, and so on. Similarly
for dx_avg_ns%n, actual variables names are dx_avg_ns1 for the first node set, dx_avg_ns2 for the second node set, and
so on.

Table 9.27: Variables corresponding to values in table “Model Input”

variable name value in analysis file table
filename Filename
num_els Number of elements
num_nodes Number of nodes

Refer to Section 6.3.2.1.

Table 9.28: Variables corresponding to values in table “Materials”

variable name value in analysis file table
mats_mats Number of materials
id_mat%m The material ID of the mth defined material
count_mat%m Number of elements for the mth defined material

Refer to Section 6.3.2.2.

Table 9.29: Variables corresponding to values in table “Post-processing
Sets”

variable name value in analysis file table
num_pp_sets The number of sets used in post-processing.

Faim Finite Element Analysis Manual 173 / 206

Refer to Section 6.3.2.3.

Table 9.30: Variables corresponding to values in table “Strain Energy
Density”

variable name value in analysis file table
sed_avg average (all materials)
sed_stddev std_dev (all materials)
sed_skew skewness (all materials)
sed_kurt kurtosis (all materials)
sed_min minimum (all materials)
sed_max maximum (all materials)
sed_median median (all materials)
sed_avg_mat%m average over the mth defined material
sed_stddev_mat%m sed_dev over the mth defined material
sed_skew_mat%m skewness over the mth defined material
sed_kurt_mat%m kurtosis over the mth defined material
sed_min_mat%m minimum over the mth defined material
sed_max_mat%m maximum over the mth defined material
sed_median_mat%m median over the mth defined material

Refer to Section 6.3.2.7.

Table 9.31: Variables corresponding to values in table “Von Mises
Stress”

variable name value in analysis file table
svm_avg average (all materials)
svm_stddev std_dev (all materials)
svm_skew skewness (all materials)
svm_kurt kurtosis (all materials)
svm_min minimum (all materials)
svm_max maximum (all materials)
svm_median median (all materials)
svm_avg_mat%m average over the mth defined material
svm_stddev_mat%m svm_dev over the mth defined material
svm_skew_mat%m skewness over the mth defined material
svm_kurt_mat%m kurtosis over the mth defined material
svm_min_mat%m minimum over the mth defined material
svm_max_mat%m maximum over the mth defined material
svm_median_mat%m median over the mth defined material

Refer to Section 6.3.2.8.

Table 9.32: Variables corresponding to values in table “Nodal Displace-
ments”

variable name value in analysis file table
dx_avg_ns%n The average displacement in the x direction over all nodes in the nth node set.
dx_stddev_ns%n The standard deviation of the displacement in the x direction over all nodes in the nth

node set.

Faim Finite Element Analysis Manual 174 / 206

Table 9.32: (continued)

variable name value in analysis file table
dx_min_ns%n The minimum displacement in the x direction over all nodes in the nth node set.
dx_max_ns%n The maximum displacement in the x direction over all nodes in the nth node set.
dx_median_ns%n The median displacement in the x direction over all nodes in the nth node set.
dy_avg_ns%n The average displacement in the y direction over all nodes in the nth node set.
dy_stddev_ns%n The standard deviation of the displacement in the y direction over all nodes in the nth

node set.
dy_min_ns%n The minimum displacement in the y direction over all nodes in the nth node set.
dy_max_ns%n The maximum displacement in the y direction over all nodes in the nth node set.
dy_median_ns%n The median displacement in the y direction over all nodes in the nth node set.
dz_avg_ns%n The average displacement in the z direction over all nodes in the nth node set.
dz_stddev_ns%n The standard deviation of the displacement in the z direction over all nodes in the nth

node set.
dz_min_ns%n The minimum displacement in the z direction over all nodes in the nth node set.
dz_max_ns%n The maximum displacement in the z direction over all nodes in the nth node set.
dz_median_ns%n The median displacement in the z direction over all nodes in the nth node set.

Refer to Section 6.3.2.9.

Table 9.33: Variables corresponding to values in table “Nodal Forces”

variable name value in analysis file table
fx_ns%n The total force in the x direction over all nodes in the nth node set.
fx_stddev_ns%n The standard deviation of the force in the x direction over all nodes in the nth node

set.
fx_min_ns%n The minimum force in the x direction over all nodes in the nth node set.
fx_max_ns%n The maximum force in the x direction over all nodes in the nth node set.
fx_median_ns%n The median force in the x direction over all nodes in the nth node set.
fy_ns%n The total force in the y direction over all nodes in the nth node set.
fy_stddev_ns%n The standard deviation of the force in the y direction over all nodes in the nth node

set.
fy_min_ns%n The minimum force in the y direction over all nodes in the nth node set.
fy_max_ns%n The maximum force in the y direction over all nodes in the nth node set.
fy_median_ns%n The median force in the y direction over all nodes in the nth node set.
fz_ns%n The total force in the z direction over all nodes in the nth node set.
fz_stddev_ns%n The standard deviation of the force in the z direction over all nodes in the nth node

set.
fz_min_ns%n The minimum force in the z direction over all nodes in the nth node set.
fz_max_ns%n The maximum force in the z direction over all nodes in the nth node set.
fz_median_ns%n The median force in the z direction over all nodes in the nth node set.

Refer to Section 6.3.2.10.

Table 9.34: Variables corresponding to values in table “Load Sharing”

variable name value in analysis file table
fx_ns%n_mat%m The force in the x direction over nodes in the nth node set, summed over nodes

belonging to the mth defined material.

Faim Finite Element Analysis Manual 175 / 206

Table 9.34: (continued)

variable name value in analysis file table
fy_ns%n_mat%m The force in the y direction over nodes in the nth node set, summed over nodes

belonging to the mth defined material.
fz_ns%n_mat%m The force in the z direction over nodes in the nth node set, summed over nodes

belonging to the mth defined material.

Refer to Section 6.3.2.13.

Table 9.35: Variables corresponding to values in table “Pistoia Failure
Load Estimate”

variable name value in analysis file table
pis_stiffx The stiffness in the x direction.
pis_stiffy The stiffness in the y direction.
pis_stiffz The stiffness in the z direction.
pis_fx_fail The estimated failure load in the x direction.
pis_fy_fail The estimated failure load in the y direction.
pis_fz_fail The estimated failure load in the z direction.

Note
The Pistoia Failure Load Estimate table is no longer generated by n88postfaim, but may be generated by the tool n88pistoia if
desired. The corresponding variables are by default not included, unless a variable list which includes them is specified.

Refer to Section 8.3 and Section 9.13.

Faim Finite Element Analysis Manual 176 / 206

Chapter 10

Bibliography

10.1 Books

[1] Gere JM, Timoshenko SP, 1997. Mechanics of materials, 4 ed. PWS Publishing Company, Boston.

10.2 Articles

[2] Cusano NE, Nishiyama KK, Zhang C, Rubin MR, Boutroy S, McMahon DJ, Guo XE, Bilezikian JP (2015).
Noninvasive Assessment of Skeletal Microstructure and Estimated Bone Strength in Hypoparathyroidism. J
Bone Miner Res. 10.1002/jbmr.2609

[3] Boyd SK, Müller R, Zernicke RF (2002). Mechanical and architectural bone adaptation in early stage experi-
mental osteoarthritis. J Bone Miner Res 17(4):687-694.

[4] Boyd SK, Ammann P (2011). Increased bone strength is associated with improved bone microarchitecture in
intact female rats treated with strontium ranelate: A finite element analysis study. Bone 48(5):1109-16.

[5] Campbell GM, Ominsky MS, Boyd SK (2010). Bone quality is partially recovered after the discontinuation
of RANKL administration in rats by increased bone mass on existing trabeculae: an in vivo micro-CT study.
Osteoporos Int 10.1007/s00198-010-1283-5.

[6] Gilchrist S, Nishiyama KK, de Bakker P, Guy P, Boyd SK, Oxland T, Cripton PA (2014). Proximal femur
elastic behaviour is the same in impact and constant displacement rate fall simulation. J Biomech 47, 3744-
3749. 10.1016/j.jbiomech.2014.06.040

[7] Homminga J, Huiskes R, Van Rietbergen B, Rüegsegger P, Weinans H (2001). Introduction and evaluation of a
gray-value voxel conversion technique. J Biomech 34(4):513-7.

[8] Iyer SP, Nikkel LE, Nishiyama KK, Dworakowski E, Cremers S, Zhang C, McMahon DJ, Boutroy S, Liu XS,
Ratner LE, Cohen DJ, Guo XE, Shane E, Nickolas TL (2014). Kidney transplantation with early corticos-
teroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol 25, 1331-1341.
10.1681/ASN.2013080851

[9] Kim S, Macdonald HM, Nettlefold L, McKay HA (2013). A comparison of bone quality at the distal radius
between Asian and white adolescents and young adults: an HR-pQCT study. J Bone Miner Res 28, 2035-2042.
10.1002/jbmr.1939

[10] Maatta M, Macdonald HM, Mulpuri K, McKay HA (2015). Deficits in distal radius bone strength, density and
microstructure are associated with forearm fractures in girls: an HR-pQCT study. Osteoporos Int 26, 1163-
1174. 10.1007/s00198-014-2994-9

Faim Finite Element Analysis Manual 177 / 206

[11] Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK (2011a). Changes in trabecular and cortical bone mi-
croarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women
with osteoporosis. Osteoporos Int 22, 357-362. 10.1007/s00198-010-1226-1

[12] Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011). Age-related patterns of trabecular and
cortical bone loss differ between sexes and skeletal sites: A population-based HR-pQCT study. J Bone Miner
Res 26(1):50-62.

[13] MacNeil JA, Boyd SK (2008). Bone strength at the distal radius can be estimated from high-resolution periph-
eral quantitative computed tomography and the finite element method. Bone 42(6):1203-1213.

[14] Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu
XS, Boutroy S, Cremers S, Shane E (2013). Rapid cortical bone loss in patients with chronic kidney disease. J
Bone Miner Res 28, 1811-1820. 10.1002/jbmr.1916

[15] Nishiyama KK, Cohen A, Young P, Wang J, Lappe JM, Guo XE, Dempster DW, Recker RR, Shane E (2014a).
Teriparatide increases strength of the peripheral skeleton in premenopausal women with idiopathic osteoporo-
sis: a pilot HR-pQCT study. J Clin Endocrinol Metab 99, 2418-2425. 10.1210/jc.2014-1041

[16] Nishiyama KK, Ito M, Harada A, Boyd SK (2014b). Classification of women with and without hip frac-
ture based on quantitative computed tomography and finite element analysis. Osteoporos Int 25, 619-626.
10.1007/s00198-013-2459-6

[17] Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010). Postmenopausal women with os-
teopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal
aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25 (4):882-890.

[18] Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK (2013). Women with previous fragility fractures can be
classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos
Int 24, 1733-1740. 10.1007/s00198-012-2160-1

[19] Nishiyama KK, Macdonald HM, Moore SA, Fung T, Boyd SK, McKay HA (2012). Cortical porosity is higher
in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J
Bone Miner Res 27, 273-282. 10.1002/jbmr.552

[20] Odgaard A (1997a). Three-dimensional methods for quantification of cancellous bone architecture. Bone
20(4):315-328.

[21] Odgaard A, Kabel J, Van Rietbergen B, Dalstra M, Huiskes R (1997b). Fabric and elastic principal directions
of cancellous bone are closely related. J Biomech 30(5):487-495.

[22] Pistoia W, Van Rietbergen B, Eckstein F, Lill C, Lochmuller EM, Rüegsegger P (2001). Prediction of distal
radius failure with microFE models based on 3d- PQCT scans. Adv Exp Med Biol 496:143-51.

[23] Pistoia W, van Rietbergen B, Laib A, Rüegsegger P (2001). High-resolution three-dimensional-pQCT images
can be an adequate basis for in-vivo microFE analysis of bone. J Biomech Eng 123(2):176-83.

[24] Stadelmann VA, Guenther C, Eberli U, Camenisch K, Zeiter S (2015a). The effects of age on implant integra-
tion. Osteologie 2, A53.

[25] Stadelmann VA, Potapova I, Camenisch K, Nehrbass D, Richards RG, Moriarty TF (2015b). In Vivo MicroCT
Monitoring of Osteomyelitis in a Rat Model. Biomed Res Int 2015, 587857. 10.1155/2015/587857

[26] Stadelmann VA, Conway CM, Boyd SK (2012). In vivo monitoring of bone – implant bond strength by
microCT and finite element modelling. Computer Methods in Biomechanics and Biomedical Engineering,
DOI:10.1080/10255842.2011.648625

[27] Su R, Campbell GM, Boyd SK (2006). Establishment of an architecture-specific experimental validation ap-
proach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.
Med Eng Phys 29(4):480-490.

[28] Sutter S, Nishiyama KK, Kepley A, Zhou B, Wang J, McMahon DJ, Guo XE, Stein EM (2014). Abnormalities
in cortical bone, trabecular plates, and stiffness in postmenopausal women treated with glucocorticoids. J Clin
Endocrinol Metab 99, 4231-4240. 10.1210/jc.2014-2177

Faim Finite Element Analysis Manual 178 / 206

[29] van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment of elastic symmetries and
properties of trabecular bone architecture. J Biomechanics 29(12):1653-7.

[30] Zderic I, Windolf M, Gueorguiev B, Stadelmann VA (2014). Monitoring of cement distribution in vertebral
bodies during vertebroplasty. Bone Joint J 96-B:(SUPP 11), 183.

Faim Finite Element Analysis Manual 179 / 206

Appendix A

Upgrading from previous versions

A.1 Upgrading from Faim version 7

A.1.1 Changing from vtkn88 to vtkbone

In version 8, the closed-source vtkn88 is replaced with the open-source vtkbone. Therefore, in all your python scripts, you
will have to search for vtkn88 and replace it with vtkbone. (Similarly for the capitalized versions: VTKN88→ VTKBONE.)

A.2 Upgrading from Faim version 6

A.2.1 Updating version 6 vtkn88 scripts to work with version 7

vtkn88 is now based on VTK version 6. Many of the example scripts in vtkn88 version 6 and earlier used the VTK method
SetInput, which has been deprecated and replaced with SetInputData. Simply replacing SetInput with SetInput-
Data is sufficient to fix these scripts.

For example, here is a simple operation, in Python, that writes a n88model file. This is the version 6 version:

writer = vtkn88.vtkn88N88ModelWriter()
writer.SetInput(model)
writer.SetFileName(output_file)
writer.Update()

For version 7, it needs to be updated to:

writer = vtkn88.vtkn88N88ModelWriter()
writer.SetInputData(model)
writer.SetFileName(output_file)
writer.Update()

A.3 Upgrading from Faim version 5

A.3.1 Converting Faim version 5 file formats

Faim version 5 used two file formats: .inp files for input files to faim, and .dat files for output. These can be upgraded to
version 6 style n88model files with the n88copymodel tool. You may want to upgrade old archived files. Besides being much
more space efficient, the new file format is also more robust. It is also standards-compliant, and is more easily read with third
party software. (See n88model File Format.)

To convert a version 5 style file, use n88copymodel like this,

Faim Finite Element Analysis Manual 180 / 206

n88copymodel olddata.inp newdata.n88model

You can also specify that compression be used in writing the n88model file, like this

n88copymodel --compress olddata.inp newdata.n88model

Compressed n88model files take less disk space, but are slower to read and particularly to write. They are otherwise identical
to uncompressed n88model files. You never need to uncompress them before using them.

Version 5 .dat output files are somewhat more problematic to convert to version 6 n88model files, because the .dat files
do not contain the complete model information. In particular, they lack any information about material parameters or about
boundary conditions or applied loads. Nevertheless, if you have only a .dat file, it is still possible to convert it to a n88model
file, but the resulting model will be incomplete. It can be opened and visualized with ParaView, and it is possible to read the
solution fields out of it, but it cannot be re-solved, nor can it be processed with n88postfaim.

A .dat file can be converted with

n88copymodel olddata.dat newdata.n88model

As before, you may optionally specify --compress.

If you have both the original .inp and the .dat file, they can be converted to a single n88model file by specifying both as
input arguments,

n88copymodel olddata.inp olddata.dat newdata.n88model v1
v1 The order is important: the .inp should be specified first.

This will create a n88model file that can used either as a complete input file to n88solver, should you wish to solve it again,
and that also contains the complete solution fields.

A.3.2 Updating 5 vtkn88 scripts to work with 6

Here we outline the steps required to update a version 5.x vtkn88 script to work in 6.0 . We do not document all the changes
and additions to vtkn88 in 6.0, instead we only concentrate on those changes that must be made to get old scripts to work
correctly in 6.0

• vtkn88Material instances should be assigned a name.

All materials are now required to have a unique name. In fact, if you don’t explicitly set a name, vtkn88 will assign a unique
name for you, but it will be an uninformative name such as “NewMaterial1”. Names can be assigned like this:

bone_material = vtkn88.vtkn88LinearIsotropicMaterial()
bone_material.SetName("bone")

• Method SetModelSourceDescription of vtkn88FiniteElementModel is deprecated.

Having this method present will not prevent the scripts from running, but will generate a warning message. The functionality is
now encompassed by the Log field of vtkn88FiniteElementModel , which allows a much greater amount of information
to be recorded.

• Method NodeIdsFromSelection of vtkn88FiniteElementModel is deprecated.

Use the method GetNodeSet instead.

Faim Finite Element Analysis Manual 181 / 206

• Method CreateDisplacementConstraint of vtkn88FiniteElementModel is renamed to ApplyBoundaryCon-
dition.

• Method CreateFixedConstraint of vtkn88FiniteElementModel is renamed to FixNodes.

• Method CreateForceConstraint of vtkn88FiniteElementModel is renamed to ApplyLoad.

• Method DataSetFromSelection of vtkn88FiniteElementModel is deprecated.

Use either DataSetFromNodeSet or DataSetFromElementSet.

• Method PolyDataFromSelection of vtkn88FiniteElementModel is deprecated.

You can duplicate this functionality as follows. Instead of

visible_bone_vertices = model.PolyDataFromSelection("bone_top")

the following code can be used instead:

reduceToPolyData = vtk.vtkGeometryFilter()
reduceToPolyData.SetInput(model.DataSetFromNodeSet("bone_top"))
reduceToPolyData.MergingOff()
reduceToPolyData.Update()
visible_bone_vertices = reduceToPolyData.GetOutput()

Note that this functionality is rarely required, as its main use was to write node sets as VTK PolyData files (which are slightly
more efficient than VTK Unstructured Grid files). We now recommend not performing this within scripts at all, but instead to
use n88extractsets to extract the node sets from .n88model files.

• The names of node sets (and element sets) must be set on the data array of Point IDs.

Instead of this

model.AddNodeSet(visibleNodesIds, "bone_top")

we now write this

visibleNodesIds.SetName("bone_top")
model.AddNodeSet(visibleNodesIds)

• Class vtkn88FiniteElementRun is renamed to vtkn88SolverParameters .

• Specify element sets as well as node sets for post-processing. For examples, refer to the tutorials on vtkn88, specifically
Section 7.6.8 and Section 7.8.14.

• You should make use of the History and Log fields. See any of the tutorials on vtkn88 for examples.

• Instead of vtkn88FAIMInputWriter use vtkn88N88ModelWriter . Don’t forget to use a file name extention
“.n88model” instead of “.inp”.

• Don’t specify the iteration limit for the convergence tolerance. If you really want to change these from their defaults, use the
command line arguments to n88solver.

Faim Finite Element Analysis Manual 182 / 206

Appendix B

n88model File Format

The n88model format is a type of NetCDF4/HDF5 file. NetCDF4/HDF5 is a very widely used, high performance and robust file
format for scientific and numerical data. Many standard data processing packages are able to read either NetCDF4 or HDF5,
which makes it generally straightforward to import Faim data for custom processing.

Note
The curious may be wondering how a file can be both NetCDF4 and HDF5. Historically, NetCDF and HDF were different
formats. As they served largely similar purposes, starting with NetCDF 4, NetCDF adopted the HDF5 file format (amongst
other options), while retaining its API or programming interface. Functionally, the NetCDF file format is a subset of HDF5, with
a somewhat simpler API. HDF5 files must be structured in a specific way to be a NetCDF4 file; not any HDF5 file can be read
through the NetCDF4 library.

B.1 Converting a n88model file to and from a text file

Sometimes it is useful to examine or modify a data file by hand. Users of faim 5.x may recall that it used a text format, which
while subject to many disadvantages, was easy to edit manually. n88model files cannot be modified directly by hand, however
they can be converted to a type of text file, called CDL, that is human readable. Furthermore, CDL text files, provided they are
consistent with the n88model format convention, can easily be converted back into an n88model file.

To convert an n88model file to text, the command ncdump can be used. For example:

ncdump 1x1x2_uniaxial.n88model > 1x1x2_uniaxial.txt

Note
You can create this example file with the command n88modelgenerator 1x1x2.vti. The file 1x1x2.vti can be
found in the data directory of faim. It is a trivial 2-element geometry.

To convert it back again (perhaps after modifying it), follow this example

ncgen -k hdf5 -o 1x1x2_uniaxial.n88model 1x1x2_uniaxial.txt

B.2 Example n88model file in CDL text format

The easiest way to understand the structure of an n88model file is to examine it in text format. Here is the 1x1x2_uni-
axial.txt file, generated in the previous section example. This model has been solved and the file contains solution data.
Although it is only two elements, the text representation of the n88model file is rather lengthy!

Faim Finite Element Analysis Manual 183 / 206

netcdf \1x1x2_uniaxial {
dimensions:

Dimensionality = 3 ;

// global attributes:
:Conventions = "Numerics88/Finite_Element_Model-1.0" ;
:ActiveProblem = "Problem1" ;
:Log = "2012-Jul-18 08:59:45\nn88modelgenerator parameters:\n\ninput_file = / ←↩

Applications/faim-6.0/data/1x1x2.vti\noutput_file = 1x1x2_uniaxial.n88model\ ←↩
ntest = uniaxial\ntest_axis = z\ ←↩
nstrain = -0.01\npin = off\ ←↩
ntop_surface = intersection\nbottom_surface = ←↩
intersection\nmaterial_table = homogeneous\nyoungs_modulus ←↩

= 6829\npoissons_ratio = 0.3\nconnectivity_filter ←↩
= warn\n\n2012-Jul-18 09:19:26\nn88solver parameters:\n\nengine ←↩

= mt\nthreads = 1\nrestart = ←↩
0\nlimit = 30000\nconvergence tolerance = 1e-06\nresidual ←↩
tolerance = 0\nwindow = 4\n" ;

:History = "2012-Jul-18 08:59:45 Model created by n88modelgenerator version 6.0\ ←↩
n2012-Jul-18 09:19:26 Solved by n88solver version 6.0\n2012-Jul-18 09:19:26 ←↩
Derived fields calculated by n88derivedfields version 6.0" ;

:ActiveSolution = "Solution1" ;

group: MaterialDefinitions {

group: NewMaterial1 {

// group attributes:
:Type = "LinearIsotropic" ;
:E = 6829. ;
:nu = 0.3 ;

} // group NewMaterial1
} // group MaterialDefinitions

group: Parts {

group: Part1 {
dimensions:

NumberOfNodes = 12 ;
variables:

float NodeCoordinates(NumberOfNodes, Dimensionality) ;
data:

NodeCoordinates =
0, 0, 0,
1, 0, 0,
0, 1, 0,
1, 1, 0,
0, 0, 1,
1, 0, 1,
0, 1, 1,
1, 1, 1,
0, 0, 2,
1, 0, 2,
0, 1, 2,
1, 1, 2 ;

group: Elements {

group: Hexahedrons {
dimensions:

Faim Finite Element Analysis Manual 184 / 206

NumberOfNodesPerElement = 8 ;
NumberOfElements = 2 ;

variables:
uint ElementNumber(NumberOfElements) ;
uint NodeNumbers(NumberOfElements, NumberOfNodesPerElement) ;
ushort MaterialID(NumberOfElements) ;

data:

ElementNumber = 1, 2 ;

NodeNumbers =
1, 2, 3, 4, 5, 6, 7, 8,
5, 6, 7, 8, 9, 10, 11, 12 ;

MaterialID = 127, 127 ;
} // group Hexahedrons

} // group Elements

group: MaterialTable {
dimensions:

Size = 1 ;
variables:

ushort ID(Size) ;
string MaterialName(Size) ;

data:

ID = 127 ;

MaterialName = "NewMaterial1" ;
} // group MaterialTable

} // group Part1
} // group Parts

group: Constraints {

group: bottom_fixed {
dimensions:

NumberOfValues = 4 ;
variables:

uint NodeNumber(NumberOfValues) ;
byte Sense(NumberOfValues) ;
float Value(NumberOfValues) ;

// group attributes:
:Part = "Part1" ;
:Type = "NodeAxisDisplacement" ;

data:

NodeNumber = 1, 2, 3, 4 ;

Sense = 3, 3, 3, 3 ;

Value = 0, 0, 0, 0 ;
} // group bottom_fixed

group: top_displacement {
dimensions:

NumberOfValues = 4 ;
variables:

uint NodeNumber(NumberOfValues) ;
byte Sense(NumberOfValues) ;
float Value(NumberOfValues) ;

Faim Finite Element Analysis Manual 185 / 206

// group attributes:
:Part = "Part1" ;
:Type = "NodeAxisDisplacement" ;

data:

NodeNumber = 9, 10, 11, 12 ;

Sense = 3, 3, 3, 3 ;

Value = -0.02, -0.02, -0.02, -0.02 ;
} // group top_displacement

} // group Constraints

group: Sets {

group: NodeSets {

group: face_z0 {
dimensions:

NumberOfNodes = 4 ;
variables:

uint NodeNumber(NumberOfNodes) ;

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 1, 2, 3, 4 ;
} // group face_z0

group: face_z1 {
dimensions:

NumberOfNodes = 4 ;
variables:

uint NodeNumber(NumberOfNodes) ;

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 9, 10, 11, 12 ;
} // group face_z1

group: face_x0 {
dimensions:

NumberOfNodes = 6 ;
variables:

uint NodeNumber(NumberOfNodes) ;

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 1, 3, 5, 7, 9, 11 ;
} // group face_x0

group: face_x1 {
dimensions:

NumberOfNodes = 6 ;
variables:

uint NodeNumber(NumberOfNodes) ;

Faim Finite Element Analysis Manual 186 / 206

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 2, 4, 6, 8, 10, 12 ;
} // group face_x1

group: face_y0 {
dimensions:

NumberOfNodes = 6 ;
variables:

uint NodeNumber(NumberOfNodes) ;

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 1, 2, 5, 6, 9, 10 ;
} // group face_y0

group: face_y1 {
dimensions:

NumberOfNodes = 6 ;
variables:

uint NodeNumber(NumberOfNodes) ;

// group attributes:
:Part = "Part1" ;

data:

NodeNumber = 3, 4, 7, 8, 11, 12 ;
} // group face_y1

} // group NodeSets

group: ElementSets {

group: face_z0 {
dimensions:

NumberOfElements = 1 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 1 ;
} // group face_z0

group: face_z1 {
dimensions:

NumberOfElements = 1 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 2 ;
} // group face_z1

Faim Finite Element Analysis Manual 187 / 206

group: face_x0 {
dimensions:

NumberOfElements = 2 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 1, 2 ;
} // group face_x0

group: face_x1 {
dimensions:

NumberOfElements = 2 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 1, 2 ;
} // group face_x1

group: face_y0 {
dimensions:

NumberOfElements = 2 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 1, 2 ;
} // group face_y0

group: face_y1 {
dimensions:

NumberOfElements = 2 ;
variables:

uint ElementNumber(NumberOfElements) ;

// group attributes:
:Part = "Part1" ;

data:

ElementNumber = 1, 2 ;
} // group face_y1

} // group ElementSets
} // group Sets

group: Problems {

group: Problem1 {

// group attributes:
:Part = "Part1" ;
:Constraints = "bottom_fixed,top_displacement" ;

Faim Finite Element Analysis Manual 188 / 206

:PostProcessingNodeSets = "face_z1,face_z0" ;
:PostProcessingElementSets = "face_z1,face_z0" ;
:RotationCenter = 0.5, 0.5, 1. ;

} // group Problem1
} // group Problems

group: Solutions {

group: Solution1 {

// group attributes:
:Problem = "Problem1" ;

group: NodeValues {
dimensions:

NumberOfNodes = 12 ;
variables:

float Displacement(NumberOfNodes, Dimensionality) ;
float Residual(NumberOfNodes, Dimensionality) ;
float ReactionForce(NumberOfNodes, Dimensionality) ;

data:

Displacement =
-0.001500001, -0.001500001, 0,
0.001500001, -0.001500001, 0,
-0.001500001, 0.001500001, 0,
0.001500001, 0.001500001, 0,
-0.001500001, -0.001500001, -0.01000001,
0.001500001, -0.001500001, -0.01000001,
-0.001500001, 0.001500001, -0.01000001,
0.001500001, 0.001500001, -0.01000001,
-0.001500001, -0.001500001, -0.02,
0.001500001, -0.001500001, -0.02,
-0.001500001, 0.001500001, -0.02,
0.001500001, 0.001500001, -0.02 ;

Residual =
-1.528847e-07, -1.528847e-07, 0,
1.528847e-07, -1.528847e-07, 0,
-1.528847e-07, 1.528847e-07, 0,
1.528847e-07, 1.528847e-07, 0,
1.437116e-05, 1.437116e-05, 3.424616e-05,
-1.437116e-05, 1.437116e-05, 3.424616e-05,
1.437116e-05, -1.437116e-05, 3.424616e-05,
-1.437116e-05, -1.437116e-05, 3.424616e-05,
1.452404e-05, 1.452404e-05, 0,
-1.452404e-05, 1.452404e-05, 0,
1.452404e-05, -1.452404e-05, 0,
-1.452404e-05, -1.452404e-05, 0 ;

ReactionForce =
1.528847e-07, 1.528847e-07, 17.07251,
-1.528847e-07, 1.528847e-07, 17.07251,
1.528847e-07, -1.528847e-07, 17.07251,
-1.528847e-07, -1.528847e-07, 17.07251,
-1.437116e-05, -1.437116e-05, -3.424616e-05,
1.437116e-05, -1.437116e-05, -3.424616e-05,
-1.437116e-05, 1.437116e-05, -3.424616e-05,
1.437116e-05, 1.437116e-05, -3.424616e-05,
-1.452404e-05, -1.452404e-05, -17.07248,
1.452404e-05, -1.452404e-05, -17.07248,
-1.452404e-05, 1.452404e-05, -17.07248,

Faim Finite Element Analysis Manual 189 / 206

1.452404e-05, 1.452404e-05, -17.07248 ;
} // group NodeValues

group: ElementValues {
dimensions:

NumberOfElements = 2 ;
NumberOfStressStrainComponents = 6 ;

variables:
float Stress(NumberOfElements, NumberOfStressStrainComponents) ;
float VonMisesStress(NumberOfElements) ;
float Strain(NumberOfElements, NumberOfStressStrainComponents) ;
float StrainEnergyDensity(NumberOfElements) ;

data:

Stress =
-6.115387e-07, -6.115387e-07, -68.29005, 0, 0, 0,
5.809617e-05, 5.809617e-05, -68.28991, 0, 0, 0 ;

VonMisesStress = 68.29005, 68.28997 ;

Strain =
0.003000002, 0.003000002, -0.01000001, 0, 0, 0,
0.003000002, 0.003000002, -0.009999992, 0, 0, 0 ;

StrainEnergyDensity = 0.3414505, 0.3414495 ;
} // group ElementValues

} // group Solution1
} // group Solutions

}

B.3 Specification

NetCDF4 files consist of dimensions, variables and attributes, as well as groups. Groups can contain dimensions, variables and
attributes, as well as other groups, thus forming a nested tree structure. Variables can also contain attributes.

Types specified below as “numeric” may be any concrete numeric type. Similarly “integral” may be any concrete integer type.

It is convenient to refer to the text format example when trying to follow the file specification.

Note
In some cases dimensions may be named differently than specified below. (For complex reasons some of the n88 tools are
unable to deduce the correct dimension names in certain rare cases.) This should be avoided where possible when writing
a file. For reading files, the most reliable method is to inquire about the dimensions of the variables, rather than looking up
dimensions by name.

B.3.1 Root group

The root group exists for all NetCDF4 files. It does not need to be created.

attribute [text] Conventions
Specifies that this is a n88model file. Must be “Numerics88/Finite_Element_Model-1.0”. Required.

attribute [text] ActiveProblem
Specifies the problem that will be used as input to the solver. Must be set to a name of a subgroup of the Problems group.
Required by the solver.

Faim Finite Element Analysis Manual 190 / 206

attribute [text] ActiveSolution
Specifies the active solution set, which is typically the one that will be used for post-processing or rendering. Must be set
to a name of a subgroup of the Solution group. Required by n88postfaim, but not required by the solver.

attribute [text] History
Brief history of the operations that have been performed on the file. By convention, add one line to the history for each
operation performed on the file. Each line should start with a time/date stamp. Additional detail should go into the Log
attribute. Required.

attribute [text] Log
As much additional detail as required about operations that have been performed on the file. Each addition or section in
Log may be multiple lines. It is recommended that each section start with a time/date stamp, in order to make it easy to
correlate with History. Optional.

dimension Dimensionality
Specifies the dimension of the problem. Currently it must be 3, although future versions of Faim might also support 2D
models. Required.

B.3.2 MaterialDefinitions group

This group contains material definitions. Each material definition is implemented as a subgroup, where the name of the subgroup
is the name of the material being defined. Each subgroup is required to have an attribute Type. Required.

subgroups of MaterialDefinitions of Type “LinearIsotropic”
A subgroup that defines a linear isotropic material. Optional. As many may be defined as required.

attribute [text] Type
“LinearIsotropic”. Required.

dimension MaterialArrayLength
Specifies the number of materials, if a material array if being defined. Optional; if not present a single material is
being defined.

attribute [numeric] or variable E
Specifies the Young’s Modulus of the material, or, if a variable, a sequence of length MaterialArrayLength of Young’s
Modulii for the materials. Required.

attribute [numeric] or variable nu
Specifies the Poisson’s Ratio of the material, or, if a variable, a sequence of length MaterialArrayLength of Poisson’s
Ratios for the materials. Required.

subgroups of MaterialDefinitions of Type “LinearOrthotropic”
A subgroup that defines a linear orthotropic material. Optional. As many may be defined as required.

attribute [text] Type
“LinearOrthotropic”. Required.

dimension MaterialArrayLength
Specifies the number of materials, if a material array if being defined. Optional; if not present a single material is
being defined.

attribute [numeric, length 3] or variable E
Specifies the Young’s Modulii of the material as Exx, Eyy, Ezz. Alternatively, if a variable, must be of dimensions
MaterialArrayLength×3. Required.

attribute [numeric, length 3] or variable nu
Specifies the Poisson’s Ratio of the material as νyz, νzx, νxy. Alternatively, if a variable, must be of dimensions
MaterialArrayLength×3. Required.

attribute [numeric, length 3] or variable G
Specifies the Shear Modulus of the material as Gyz, Gzx, Gxy. Alternatively, if a variable, must be of dimensions
MaterialArrayLength×3. Required.

Faim Finite Element Analysis Manual 191 / 206

subgroups of MaterialDefinitions of Type “LinearAnisotropic”
A subgroup that defines a linear anisotropic material. Optional. As many may be defined as required.

attribute [text] Type
“LinearAnisotropic”. Required.

dimension MaterialArrayLength
Specifies the number of materials, if a material array if being defined. Optional; if not present a single material is
being defined.

attribute [numeric, length 36] or variable StressStrainMatrix
Specifies the 36 elements of the stress-strain matrix. Note that since the stress-strain matrix is symmetric, there are
only 21 unique values, but for a single material all 36 must be given. They must be specified in the order K11, K12,
K13 . . . K66, but since the matrix is symmetric, this is equivalent to K11, K21, K31 . . . K66. Alternatively, if
a variable, must be of dimensions MaterialArrayLength×21. Note that in the case of a material array, the upper
triangular packed form of the matrix stored for efficiency. Then for each material in the array the indices required are
K11, K12, K22, K13, K23, K33 . . . K66 , which are the 21 unique values. Due to symmetry, this sequence is the same
as K11, K21, K22, K31, K32, K33 . . . K66. Required.

subgroups of MaterialDefinitions of Type “VonMisesIsotropic”
A subgroup that defines an isotropic von Mises elastoplastic material. Optional. As many may be defined as required.

attribute [text] Type
“VonMisesIsotropic”. Required.

dimension MaterialArrayLength
Specifies the number of materials, if a material array if being defined. Optional; if not present a single material is
being defined.

attribute [numeric] or variable E
Specifies the Young’s Modulus of the material, or, if a variable, a sequence of length MaterialArrayLength of Young’s
Modulii for the materials. Required.

attribute [numeric] or variable nu
Specifies the Poisson’s Ratio of the material, or, if a variable, a ssequence of length MaterialArrayLength of Poisson’s
Ratios for the materials. Required.

attribute [numeric] Y
Specifies the Yield Strength of the material, or, if a variable, a sequence of length MaterialArrayLength of Yield
Strengths for the materials. Required.

subgroups of MaterialDefinitions of Type “MohrCoulombIsotropic”
A subgroup that defines an isotropic Mohr Coulomb elastoplastic material. Optional. As many may be defined as required.

attribute [text] Type
“MohrCoulombIsotropic”. Required.

dimension MaterialArrayLength
Specifies the number of materials, if a material array if being defined. Optional; if not present a single material is
being defined.

attribute [numeric] or variable E
Specifies the Young’s Modulus of the material, or, if a variable, a sequence of length MaterialArrayLength of Young’s
Modulii for the materials. Required.

attribute [numeric] or variable nu
Specifies the Poisson’s Ratio of the material, or, if a variable, a sequence of length MaterialArrayLength of Poisson’s
Ratios for the materials. Required.

attribute [numeric] or variable c
Specifies the Mohr Coulomb c parameter (cohesion) of the material, or, if a variable, a sequence of length Materi-
alArrayLength of c values for the materials. Required.

attribute [numeric] or variable phi
Specifies the Mohr Coulomb ϕ parameter (friction angle) of the material, or, if a variable, a ssequence of length
MaterialArrayLength of ϕ values for the materials. Required.

Faim Finite Element Analysis Manual 192 / 206

attribute [numeric] or variable psi
Specifies the Mohr Coulomb ψ parameter (dilation angle) of the material, or, if a variable, a sequence of length
MaterialArrayLength of ψ values for the materials. Optional, assumed zero if not specified.

B.3.3 Parts group

This group defines parts. A part is a geometric collection of elements, along with the associated nodes and the material assign-
ments for the elements. Each part is implemented as a subgroup, where the name of the subgroup is the name of the part being
defined.

subgroups of Part
The subgroup name gives the part name. At least one subgroup is required, and multiple ones may be defined.

dimension NumberOfNodes
The number of nodes in the variable NodeCoordinates.

variable NodeCoordinates (NumberOfNodes, Dimensionality) [numeric]
Specifies the x,y,z coordinates of the nodes. The node numbering is implicit, and 1-based. Hence the first row is node
1, the second node 2, etc. . .

subgroup MaterialTable of subgroups of Part
Maps material names, as defined in MaterialDefinitions, to material ID numbers. Material ID numbers are then assigned
to each element. Required by the solver.

dimension Size
The number of entries in the material table for this part.

variable MaterialName (Size) [text]
The material names, corresponding to subgroups in MaterialDefinitions. Required.

variable ID (Size) [integral]
The IDs assigned to to materials. Any IDs in the range 1-32768 may be assigned, provided they are unique. Required.

subgroup Element of subgroups of Part
Required. Currently must itself contain exactly the single subgroup, Hexahedrons.

subgroup Hexahedron of subgroup Element of subgroups of Part
Defines the hexahedral elements of the part. Note that the current version of n88solver only handles regular hexahe-
drons, although the file format does not enforce this. Currently required, although in future versions supporting multiple
element types, may become optional.

dimension NumberOfNodesPerElement [=8]
The number of nodes per element, which for hexahedrons is 8.

dimension NumberOfElements
The number of hexahedral elements.

variable ElementNumber (NumberOfElements) [integral]
Explicitly assigned element numbers. In the current version, the solver requires consecutively-numbered elements
starting with element 1, but this restriction may be relaxed in future versions. Required.

variable NodeNumbers (NumberOfElements, NumberOfNodesPerElement)
The node numbers of the nodes defining each hexahedron. The topology is as the VTK type VTK_VOXEL, and is
shown in Figure 50. The global node numbers (1-indexed) must be given for each element in the order as shown in
the figure. Required.

variable MaterialID (NumberOfElements) [integral]
The material IDs of the materials assigned to each element. IDs correspond to values in the MaterialTable for this
part. Required.

Faim Finite Element Analysis Manual 193 / 206

1
2

4
3

5
6

8
7

z

y
x

Figure B.1: Topology of hexahedral elements in n88model file (1-indexed).

Warning
The ordering of the elements in the input file has a strong influence on the solver. Certain orderings are optimal and
will solve in the fastest time. There exist orderings which will cause the solver to fail with an error. A future version of
Faim might reorder the input elements as required, but in the current version, we strongly recommend that elements be
ordered in the file according to “x fastest, z slowest”.

B.3.4 Constraints group

Constraints are sets of values assigned to nodes, and used to define both boundary conditions and applied loads. Each constraint
(which itself is a set of values) is implemented as a subgroup, where the name of the subgroup is the name of the constraint being
defined. Optional, although a well-defined problem will always have some constraints.

Note
vtkbone supports constraints defined on elements as well, which the n88model file format does not currently support. This
is the natural way to define applied loads. The file writers in vtkbone distribute element forces appropriately on to the nodes
on writing. Because of this, vtkboneN88ModelWriter and vtkboneN88ModelReader are not quite inverses. Using
them in sequence can result in a model with a different, although physically equivalent, set of constraints.

subgroups of Constraints
The subgroup name gives the Constraint name. Optional. Any number of subgroups may be defined.

attribute [text] Part
The part to which the constraint is associated. Note that this does not necessarily imply that the constraint will in fact
be applied to the named part. Refer to the attribute Constraints in the Problems group.

attribute [text] Type
Currently two types are supported, NodeAxisDisplacement and NodeAxisForce. For the former, specific displace-
ments for given nodes along given axis directions (the “sense”) are defined. The latter is similar but the specified
values are forces.

dimension NumberOfValues
The number of values specified by this constraint.

variable NodeNumber (NumberOfValues) [integral]
A list of the node numbers to which the constraint is applied.

variable Sense (NumberOfValues) [integral]
A list of the senses along which the constraint is applied. Valid values are 1,2,3 for x,y,z respectively.

Faim Finite Element Analysis Manual 194 / 206

variable Value (NumberOfValues) [integral]
A list of the values (displacement or force) of the constraint.

B.3.5 Sets group

Sets are collections of nodes or of elements. The primary use of sets in n88model files is for post-processing. n88postfaim
requires at least two-post processing sets of nodes, which must be matched by sets of the corresponding elements. Quantities
(e.g. the difference between the sum of the forces on the node sets) are then calculated between pairs of sets. A secondary use of
sets is simply to store sets that can be further refined and transformed into boundary conditions during model generation. This is
particularly useful when the model generation occurs in several stages.

subgroup NodeSets of Sets
Defines node sets. Each node set is implemented as a subgroup, where the name of the subgroup is the name of the node
set being defined. Required by n88postfaim.

subgroups of subgroup NodeSets of Sets
The subgroup name gives the node set name. Optional. As many may be defined as required.

attribute [text] Part
The part with which the node set is associated.

dimension NumberOfNodes
The number of nodes in the node set.

variable NodeNumber
A list of the node numbers of the nodes in the set.

subgroup ElementSets of Sets
Defines element sets. Each element set is implemented as a subgroup, where the name of the subgroup is the name of the
element set being defined. Optional, although element sets must be defined if n88postfaim is to be used.

subgroups of subgroup ElementSets of Sets
The subgroup name gives the element set name. Optional. As many may be defined as required.

attribute [text] Part
The part with which the element set is associated.

dimension NumberOfElements
The number of elements in the element set.

variable ElementNumber
A list of the element numbers of the elements in the set.

B.3.6 Problems group

The Problems group defines problems that can be solved by the solver. Multiple problems may be defined. Each problem is
implemented as a subgroup, where the name of the subgroup is the name of the problem being defined. In the current version,
only the problem specified by the root-level attribute ActiveProblem will be solved when the file is submitted to the solver.
Required by the solver.

subgroups of Problem
The subgroup name gives the problem name. Optional. As many may be defined as required.

attribute [text] Part
Gives the part that will be used for this problem. Required.

attribute [text] Constraints
Gives a list of constraints that will be applied to the problem. Takes the form of a list of constraint names separated
by commas. It is clearly a logical error to assign constraints that are associated with a different part. Required.

Faim Finite Element Analysis Manual 195 / 206

attribute [numeric] ConvergenceTolerance
Specifies the convergence tolerance to be used by the solver. Optional, and recommended that you not set this in the
n88model file, because the optimum value depends on the solver. The solver will typically choose an appropriate
value, but the choice can be specified with a command line option to n88solver, which is the recommended way
to set the convergence tolerance should you wish to change it.

attribute [numeric] ConvergenceWindow
Specifies the convergence window to be used by the solver. Optional, and recommended that you not set this in the
n88model file, because the optimum value depends on the solver. The solver will typically choose an appropriate
value, but the choice can be specified with a command line option to n88solver, which is the recommended way
to set the convergence window should you wish to change it.

attribute [integral] MaximumIterations
Specifies the maximum iterations to be used by the solver. Optional, and recommended that you not set this in the
n88model file, because the optimum value depends on the solver. The solver will typically choose an appropriate
value, but the choice can be specified with a command line option to n88solver, which is the recommended way
to set the maximum iterations should you wish to change it.

attribute [text] PostProcessingNodeSets
Gives a list of node sets that will be used for post-processing. Takes the form of a list of node set names separated by
commas. n88postfaim requires that at least two post-processing node sets to be defined. n88postfaim has an
equivalent command-line option which takes precedence.

attribute [text] PostProcessingElementSets
Gives a list of element sets that will be used for post-processing. Takes the form of a list of element set names separated
by commas. n88postfaim requires that every node set specified in PostProcessingNodeSets be exactly matched with an
element set of the associated elements. n88postfaim has an equivalent command-line option which takes precedence.

attribute [numeric, length 3] RotationCenter
Gives the rotation center. This value is used only for post-processing. Optional.

B.3.7 Solutions group

The solutions group contains solution values as calculated by n88solver or n88derivedfields. Any number of solution
sets may be defined (including multiple solution sets per problem). Each solution set is implemented as a subgroup, where
the name of the subgroup is the name of the problem being defined. The solution set specified by the root level attribute
ActiveSolution is the one that will be used for post-processing.

subgroups of Solutions
The subgroup name gives the solution set name. Optional. As many may be defined as required.

attribute [text] Problem
The problem to which the solution applies. Required.

subgroup NodeValues of subgroups of Solutions
A group containing variables that specify values on each node. Variables are identified by name, and may be either one-
dimensional (scalar values on the nodes), or two-dimensional (vector values on the nodes).

dimension NumberOfNodes
The number of nodes in the problem. This is redundant with the number of nodes defined in the part, and must be
equal to it. (The NetCDF4 format requires that it be re-defined here.) Required.

typical variables in NodeValues
• Displacement (NumberOfNodes, Dimensionality)
• Residual (NumberOfNodes, Dimensionality)
• ReactionForce (NumberOfNodes, Dimensionality)

subgroup ElementValues of subgroups of Solutions
A group containing variables that specify values on each element. Variables are identified by name, and may be either
one-dimensional (scalar values on the elements), or two-dimensional (vector values on the elements).

Faim Finite Element Analysis Manual 196 / 206

dimension NumberOfElements
The number of elements in the problem. This is redundant with the number of elements defined in the part, and must
be equal to it. (The NetCDF4 format requires that it be re-defined here.) Required.

dimension NumberOfStressStrainComponents [=6]
Stress and strain are defined on the elements, and have 6 components, so a dimension equal to 6 must be defined. The
order must be xx,yy,zz,yz,zx,xy.

typical variables in ElementValues
• Stress (NumberOfElements, NumberOfStressStrainComponents)
• Strain (NumberOfElements, NumberOfStressStrainComponents)
• VonMisesStress (NumberOfElements)
• StrainEnergyDensity (NumberOfElements)

B.4 Writing code to read and write n88model files

The following methods are possible for reading and writing n88model files:

1. Use the vtkbone classes vtkboneN88ModelReader and vtkboneN88ModelWriter , either in C++ or in python.

2. Use the python class N88ModelReader which is part of n88tools.

3. Directly read or write the file with the netCDF4 library in C or C++, following the above file standard. Refer to http://www.unidata.ucar.edu/-
software/netcdf/docs/ for documentation on using the NetCDF interface.

4. Directly read or write the file with the netCDF4 python module (http://unidata.github.io/netcdf4-python/), following the
above file standard. See for example the source file modelinfo.py which is part of n88tools. If you have installed
n88tools using Anaconda Python, then the netCDF4 module is automatically installed as a dependency.

http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelReader.html
http://numerics88.com/documentation/vtkbone/1.0/classvtkboneN88ModelWriter.html
http://www.unidata.ucar.edu/software/netcdf/docs/
http://www.unidata.ucar.edu/software/netcdf/docs/
http://unidata.github.io/netcdf4-python/

Faim Finite Element Analysis Manual 197 / 206

Appendix C

Automating the Processing of Multiple Models
With Scripts

Important
This section currently applies only to OS-X and Linux.

Very often one has not just a single model to solve, but a whole series of data sets that needs to be modelled by FE analysis. The
section will show how to use simple shell scripts to automate this task.

Tip
We highly recommend initially running the models one at a time, and visualizing the results as you go, to ensure that your
models and results are reasonable and as you expect, before sending hundreds of models to be solved in a batch script.

Note
Shell scripts are a standard part of any Unix-based operating system, including OS-X. If you want to learn more about shell
scripting than we present here, there are many good tutorials on the web. Search for “bash scripting tutorial”.

C.1 A script to generate a mesh and solve it

The first step to is to make a script that can generate a mesh, solve it, and clean up, all with one command. The following
shell script does this. You can find a copy of it, named mesh_solve_analyze in the examples/batch_processing
directory of the distribution. Alternatively, you can just copy and paste the commands below into a text editor and save it to a file
named mesh_solve_analyze .

#!/bin/bash
#
This is a simple script that takes a segmented image file name as input,
generates a finite element model using n88modelgenerator, then solves
it with the FAIM solver.
#
Assuming this script is in the current directory, it can be run as follows:
#
./mesh_solve_analyze image_file config_file
#

Faim Finite Element Analysis Manual 198 / 206

where image_file is the segmented image file to be processed, and
config_file is an n88modelgenerator configuration file.
#
You may want to edit this script in order to customize it.

if [$# -ne 2] ; then
echo "Usage: mesh_solve_analyze image_file config_file"
exit 1

fi

INPUT_IMAGE_FILE="$1"
MODEL_GENERATOR_CONFIG_FILE="$2"

Strip off the extension of the input file
ROOT_FILE_NAME=‘echo "${INPUT_IMAGE_FILE}" | sed ’s/\(.*\)\..*/\1/’‘
MODEL_FILE="${ROOT_FILE_NAME}.n88model"

date

echo
echo " ==== Generating ${MODEL_FILE} ===="
echo
n88modelgenerator --config="${MODEL_GENERATOR_CONFIG_FILE}" \

"${INPUT_IMAGE_FILE}" "${MODEL_FILE}"

if [$? -ne 0] ; then
echo "Mesh generation returned error."
exit 1

fi

echo
echo " ==== Solving and post-processing FE model ===="
echo
faim "${MODEL_FILE}"

if [$? -ne 0] ; then
echo "faim returned error."
exit 1

fi

echo
echo " ==== Compressing data file ===="
echo
n88compress "${MODEL_FILE}"
if [$? -ne 0] ; then

echo "compress returned error."
exit 1

fi

echo

If this script does exactly what you want, it can be run directly from the installation directory, like this:

/Applications/faim-6.0/examples/batch_processing/mesh_solve_analyze input_file config_file

On Linux, Faim is typically installed in /opt rather than /Applications.

where input_file is the segmented image file to be processed, and config_file is an n88modelgenerator config-
uration file. See Section 2.1 for information on the configuration file format. The very simplest configuration file might contain
just a single line specifying the test type:

Faim Finite Element Analysis Manual 199 / 206

test = uniaxial

You can use a text editor to create this file, and save it, for example, as myconfig.conf in your working directory.

You can also copy this script to your working data directory and customize it to your preferences. In this case you would most
likely run it like this:

./mesh_solve_analyze input_file config_file

As a tiny little tutorial, you may want to try to following:

1. Copy mesh_solve_analyze to your working directory.

2. Copy test25a.aim from the data subdirectory of your installation to your working directory.

3. Create myconfig.conf as above using a text editor, and save it to your working directory.

4. Run mesh_solve_analyze:

./mesh_solve_analyze test25a.aim myconfig.conf

Note
The script must be made "executable" before it can be run. The script in the example directory should already be executable,
but if you write your own, you may need to change permissions to make it executable before the script can be run:

chmod +x mesh_solve_analyze

Some further notes about this script:

C.2 Scripting several models

Now that we have a command to do everything required for a single data set, we can write a very simple script that will call it
several times for a number of different data sets.

Here is an example. Open a text editor and copy in the following lines. Of course, you should replace mydata1.aim, etc. . .
with real data file names. Save it for example as runjobs.sh.

source /Applications/faim-6.0/setenv.sh
./mesh_solve_analyze mydata1.aim myconfig.conf
./mesh_solve_analyze mydata2.aim myconfig.conf
./mesh_solve_analyze mydata3.aim myconfig.conf

It can now be run with this command:

bash runjobs.sh

Tip
Alternatively, you can make it executable with

chmod +x runjobs.sh

and then run it like this:

./runjobs.sh

Faim Finite Element Analysis Manual 200 / 206

C.3 Unattended execution of scripts

One issue when running scripts or very long jobs is that if the Terminal in which they were started is closed, or the user logs out,
the execution will stop. This is obviously undesirable. The solution is to prepend “nohup” to the command. For example:

nohup bash runjobs.sh

Now it will keep running until completed or manually stopped.

Tip
The etymology of nohup is that is is derived from "No Hang Up", which may help to remember it.

However, if you try this, you will note that the messages that usually appear in the Terminal to keep you informed of progress
no longer appear. Where did that go? Well, the command has been "detached" from the Terminal window so it can outlive the
Terminal. nohup instead will send all the output messages ("STDOUT" in Unix jargon) to a file named nohup.out . You can
choose to send it to a file of your choice like this:

nohup bash runjobs.sh &> runjobs.out

As well, since nothing is being output to the Terminal, you might as well get the prompt back so you can continue to use the
Terminal for other purposes. Just add an ampersand to the end of the command line, like this:

nohup bash runjobs.sh &> runjobs.out &

Now you can examine runjobs.out as you like, for example with the command:

cat runjobs.out

However, it may be inconvenient to keep re-running this command if you want to monitor the progress in real time. There is a
command for that too though:

tail -f runjobs.out

Here the -f flag means “follow”. The will continue to echo new lines as they are added to runjobs.out . When you tire of
watching this, just hit CONTROL-C. This only stops the tail command; runjobs.sh continues to execute.

Finally, when you start a process with nohup, you may need to know how to stop it as well. If the original Terminal is still open,
this is not too difficult. First find the job number with the jobs command:

$ jobs
[1]+ Running nohup ./runjobs.sh >&runjobs.out &

(Note that the $ is the command prompt - shown here to distinguish the input from the output. Don’t type the $ character.) In
this example, the job number is 1. It can be stopped with the command

kill %1

If the original Terminal is no longer open, then it gets a little more complicated, because we will need to find the Process ID
(which is system wide) instead of the Job ID (which is specific to the Terminal). This command will do it in most cases:

$ ps -A | grep runjobs.sh
55713 ttys007 0:00.00 sh ./runjobs.sh
55719 ttys007 0:00.00 grep runjobs.sh

The Process ID in this example is 55713. We can kill that process with

kill 55713

Faim Finite Element Analysis Manual 201 / 206

Chapter 11

Index

A
Abaqus input file

as output of n88modelgenerator, 163
converting to or from, 157
writing with vtkbone, 39

anisotropic, 18
anisotropy

evaluated with direct mechanics, 148
API documentation

vtkbone, 24
applied loads

extracting from n88model file, 162
in n88model file, 193
in vtkbone, 34

example, 106
array indexing

in vtkbone, 24
automating

running several models, 197
axial test, 13

B
bash scripts, 197
bending angle, 15

n88modelgenerator parameter, 165
bending test, 15
bone

density, 21
bottom constraint material id

n88modelgenerator parameter, 165
bottom surface, 11

n88modelgenerator parameter, 165
bottom surface maximum depth

n88modelgenerator parameter, 165
boundary conditions

extracting from n88model file, 162
in n88model file, 193
in vtkbone, 33

example, 104, 126, 127
visualizing

example, 82

C

C++
for vtkbone programming, 23

CDL file format, 182
Cell data versus Point data, 27, 62
center

post-processing, 50
central axis

bending test, 15
n88modelgenerator parameter, 164
torsion test, 16

class documentation
vtkbone, 24

compliance matrix, 17
compression

of n88model files, 157, 158
compression tests, 13
configuration file

n88modelgenerator, 10
confined test, 13
connectivity

ensuring in vtkbone, 28
filter

n88modelgenerator parameter, 164
constraints

applied loads
in VKTN88, 34

boundary conditions
in vtkbone, 33

extracting from n88model file, 162
convergence

in n88solver, 41
convergence measure, 41

n88solver argument, 170
convergence set

in vtkbone, 35
convergence table, 42
convergence tolerance

n88modelgenerator parameter, 167
n88solver argument, 170

convergence window
n88solver argument, 170

converting
finite element file formats, 157

Faim Finite Element Analysis Manual 202 / 206

coordinate frames, 11

D
Data Frame, 11
dense

n88evaluate argument, 160
device

n88solver argument, 170
DICOM format

as n88modelgenerator input, 163
direct mechanics, 148

n88directmechanics, 158
displacement

n88modelgenerator parameter, 164
displacements

generating with n88solver_slt, 41
statistics reported by n88postfaim, 56

dshear test, 14

E
elastoplastic, 8
elastoplastic yield criterion

Mohr-Coulomb, 20
von Mises, 20

elastoplasticity
n88modelgenerator parameter, 166

element sets
extracting from n88model file, 162
generating from node sets

example, 133
in n88model file, 194
in n88postfaim, 49
in vtkbone, 32

engine
n88solver argument, 170

environment variables, 2
error

estimating, 42
error handling

in vtkbone, 39
evaluating accuracy

example, 78
existing solution

iterating from, 41, 42
extracting

solution fields, 160
extracting sets

from n88model file, 162

F
failure load estimate

Pistoia, 151
faim

convenience utility, 154
fields

extracting, 160
solution, 47

file format
CDL text files, 182
converting formats, 157
converting n88model to and from text, 182
converting version 5 format, 179
HDF5, 182
n88model, 182
n88modelgenerator, 163
NetCDF4, 182
specification, 189

forces
reported by n88postfaim, 57

H
HDF5, 182
history

in n88model file, 190
obtaining with n88modelinfo, 75
setting in vtkbone, 38

homminga maximum material id
n88modelgenerator parameter, 166

homminga modulus exponent
n88modelgenerator parameter, 166

Hooke’s law, 17

I
ill-defined, 28, 36
indexing

array
in vtkbone, 24

input file formats
n88modelgenerator, 163

installation, 2
isotropic, 17
isotropic poissons ratio

n88modelgenerator parameter, 166
isotropic youngs modulus

n88modelgenerator parameter, 166
iterations file

n88solver argument, 170

L
license

checking
with n88solver, 170

list
contents of n88model file, 167

load sharing
reported by n88postfaim, 59

loads
in vtkbone, 34

log
convergence table, 42
in n88model file, 190
obtaining with n88modelinfo, 75
setting in vtkbone, 38

M

Faim Finite Element Analysis Manual 203 / 206

material
anisotropic, 18
elastoplastic, 19
isotropic, 17
linear, 17
Mohr-Coulomb, 20
orthotropic, 18
von Mises, 20

material arrays, 147
vtkbone, 30

material definition
in n88model file, 190
in vtkbone, 30
n88modelgenerator, 17

material definitions
large number, 147
n88modelgenerator material definitions, 166

material definitions file, 21
n88modelgenerator, 21

material specification
n88modelgenerator, 17

material table
Homminga

n88modelgenerator, 21
homogeneous

n88modelgenerator, 21
in n88model file, 192
in n88postfaim output, 51
in vtkbone, 31
n88modelgenerator, 20
n88modelgenerator parameter, 166

materials
distribution

reported by n88postfaim, 51
elastoplastic, 8

maximum iterations, 42
n88modelgenerator parameter, 167
n88solver argument, 170

maximum plastic iterations
n88modelgenerator parameter, 167
n88solver argument, 170

meshing, 8
in vtkbone, 29

MetaImage file
as n88modelgenerator input, 163

Mohr-Coulomb yield criterion, 20

N
n88coarsen, 156
n88compress, 158
n88copymodel, 157
n88derivedfields, 47, 158

arguments, 158
n88directmechanics, 158
n88evaluate, 160

arguments, 160
n88extractfields, 160

n88extractsets, 162, 171
n88interpolatesolution, 162
n88model

file format, 182
file format specification, 189

n88model file
as output of n88modelgenerator, 163
converting to or from, 157
writing with vtkbone, 39

n88modelgenerator, 10, 162
configuration file, 10
parameters

additional, 164
input and output, 163
material specification, 166
solver, 166
surface detection, 165
test configuration, 164

running, 10
tutorial, 63, 72, 81

n88modelinfo, 167
example, 72

n88pistoia
arguments, 168

n88postfaim, 48
arguments, 169
collating values in spreadsheet format, 171

n88solver, 169
arguments, 169
restarting, 42

n88solver_sla, 169
n88solver_slt, 169

generating displacements, 41
n88solver_spt, 169

plastic strain, 44
NetCDF4, 182

reading and writing n88model files as, 196
neutral axis angle, 15

n88modelgenerator parameter, 165
node sets

extracting from n88model file, 162
identifying in vtkbone

example, 126, 127
in n88model file, 194
in n88postfaim, 49
in vtkbone, 32

nohup, 200
normal strain

n88modelgenerator parameter, 164

O
old versions of faim

converting files, 157
orientation, 11
orthotropic, 18

n88modelgenerator parameter, 166
output

Faim Finite Element Analysis Manual 204 / 206

in vtkbone, 39
output file formats

n88modelgenerator, 163

P
ParaView, 9

plugins
loading, 4

paths
setting, 2

pin
n88modelgenerator parameter, 164
need for, 13

Pistoia failure load estimate, 151
plastic convergence tolerance

n88modelgenerator parameter, 167
plastic convergence window

n88solver argument, 170
plastic strain

as solution field, 47
generating with n88solver_spt, 44
statistics reported by n88postfaim, 53

plasticity, 19
n88modelgenerator parameter, 166

plugins
ParaView

loading, 4
Point data versus Cell data, 27, 62
Poisson’s ratio, 17

n88modelgenerator parameter, 166
post-processing

center, 50
with n88postfaim, 48

post-processing parameters
in n88model file, 195
in vtkbone, 36

post-processing sets
in n88postfaim, 49
in vtkbone, 36

example, 107, 133
precision

solver, 170
Python

for vtkbone scripting, 23, 94

R
reaction force

as solution field, 47
residuals

definition, 42
evaluating accuracy from, 42

restart
n88solver argument, 170

restarting
n88solver, 42

rotation center
as n88postfaim argument, 50, 169

S
scale shear to height

n88modelgenerator parameter, 165
Scanco AIM file

as n88modelgenerator input, 163
scripting

running several models, 197
segmentation, 7

example using VTKBONE, 146
sense

of applied loads, 34
of boundary conditions, 33

setenv, 2
shear modulus, 18
shear strain, 17

n88modelgenerator parameter, 164
shear stress, 17
shear test, 14
shear vector, 14

n88modelgenerator parameter, 165
shell scripts, 197
singular, 28, 36
solution

extracting fields, 160
fields, 47
in n88model file, 195
plastic strain, 47
reaction force, 47
residuals, 42
strain, 47
strain energy density, 48
stress, 47
von Mises stress, 47

solutions
obtaining with n88solver_slt, 41
obtaining with n88solver_spt, 44

solving
linear problems, 41
nonlinear problems, 44

spacing
n88modelgenerator parameter, 164

sparse
n88evaluate argument, 160

spreadsheet format
collating n88postfaim values in, 171
extracting solution fields as, 160

standard tests, 12
in vtkbone, 37

stiffness, 17
strain, 17

as solution field, 47
n88modelgenerator parameter, 164
statistics reported by n88postfaim, 52

strain energy density
as solution field, 48
statistics reported by n88postfaim, 55

stress, 17

Faim Finite Element Analysis Manual 205 / 206

as solution field, 47
statistics reported by n88postfaim, 54

summary
obtaining of n88model file, 167

surface
bottom, 11
top, 11
uneven, 17
visible, 17

symshear test, 14

T
tabulate

n88postfaim values, 171
test

n88modelgenerator parameter, 164, 165
test axis, 11

n88modelgenerator parameter, 164
Test Frame, 11

ignorance of n88postfaim thereof, 51
tests

axial, 13
bending, 15
compression, 13
confined, 13
dshear, 14
shear, 14
standard, 12

in vtkbone, 37
symshear, 14
torsion, 16
uniaxial, 13

text
CDL file format, 182
extracting solution fields as, 160

threads
n88solver argument, 170

top constraint material id
n88modelgenerator parameter, 165

top surface, 11
n88modelgenerator parameter, 165

top surface maximum depth
n88modelgenerator parameter, 165

topology
in vtkbone, 29

torque
center, 50

torques
reported by n88postfaim, 58

torsion test, 16
twist

statistics reported by n88postfaim, 57
twist angle, 16

n88modelgenerator parameter, 165

U
unattended execution, 200

under-constrained, 13
uneven surface, 17
uniaxial test, 13
units, 9
upgrading

files from version 5, 179
vtkn88 scripts from version 5.x, 180

V
visible surface, 17
von Mises stress

as solution field, 47
statistics reported by n88postfaim, 56

von Mises yield criterion, 20
VTK, 23

Cells, 26
filters, 24
Points, 26

VTK XML Image Data file
as n88modelgenerator input, 163

VTK XML Unstructured Grid file
converting to, 157

vtkbone, 23
API documentation, 24
array indexing, 24
boundary conditions, 33
class documentation, 24
error handling, 39
material arrays, 30
material definition, 30
material table, 31
meshing, 29
node and element sets, 32
post-processing parameters, 36
post-processing sets, 36
reading an image, 27
standard tests, 37
topology, 29
tutorial, 94, 101, 118
writing n88model files, 39

vtkboneFiniteElementModel, 26
vtkn88

upgrading scripts from version 5.x, 180

W
well-defined, 36
workflow

finite element analysis, 6
vtkbone, 24

Y
Young’s modulus, 17

n88modelgenerator parameter, 166

Faim Finite Element Analysis Manual 206 / 206

Colophon

This documentation was written with asciidoc (http://www.methods.co.nz/asciidoc/). The PDF is generated by compiling asci-
idoc into DocBook (http://www.oasis-open.org/docbook/) and processing with dblatex (http://dblatex.sourceforge.net/).

http://www.methods.co.nz/asciidoc/
http://www.oasis-open.org/docbook/
http://dblatex.sourceforge.net/

	Introduction
	Overview
	How to read this manual
	What is new in version 9
	Installation
	Install the solvers and n88modelgenerator
	How to run the solvers
	Install a license file
	Install n88tools and vtkbone
	Install the Numerics88 plugins for ParaView
	Additional downloads

	Work flow for finite element analysis
	Segmentation
	Model generation
	Finite element solver
	Post-processing and visualization

	Units in Faim

	Preparing Finite Element Models With n88modelgenerator
	Running n88modelgenerator
	Test orientation
	Standard tests
	Uniaxial test
	Axial test
	Confined test
	Symmetric shear test (symshear)
	Directional shear test (dshear)
	Bending test
	Torsion test

	Uneven surfaces
	Material specification
	Elastic material properties
	Plasticity
	Material table generation
	Material definitions file

	Preparing Finite Element Models with vtkbone
	vtkbone API documentation
	Array indexing in vtkbone
	Typical workflow for vtkbone
	The vtkboneFiniteElementModel object
	Reading a segmented image
	Reading an unsegmented image and segmenting it
	Ensuring connectivity
	Generating a mesh
	Defining materials
	Constructing a material table
	Creating a finite element model
	Creating node and element sets
	Adding boundary conditions
	Adding applied loads
	Optional: Adding a convergence set
	Ensuring your model is well-defined
	Setting post-processing parameters
	Filters for creating standard tests
	Modifying a finite element model
	Updating the history and the log
	Writing a model file for input to the solver
	Visualizing intermediate results
	Error handling

	Solving Linear Problems
	Obtaining solutions to linear problems using n88solver_slt
	Convergence
	Evaluating solution quality

	Solving Nonlinear Problems
	Obtaining solutions to nonlinear problems with n88solver_spt
	Convergence
	Obtaining accurate nonlinear solutions by progressively applying loads
	Evaluating nonlinear solution quality

	Post-Processing and Analysis
	Calculating additional solution fields with n88derivedfields
	Exporting solution fields from the model file
	Obtaining standard post-processing values with n88postfaim
	Running n88postfaim
	Specifying post-processing node and element sets
	Specifying a rotation center

	Description of output tables
	Model Input
	Materials
	Post-processing sets
	Strain
	Plastic Strain
	Stress
	Strain Energy Density
	Von Mises Stress
	Nodal Displacements
	Nodal Forces
	Nodal Twist
	Nodal Torques
	Load Sharing

	Tabulating results from analysis files

	Tutorials
	Introductory tutorial: Compressing a solid cube
	Generating the model
	Solving the model
	Visualizing the results with ParaView
	Obtaining numerical values from the analysis file

	Tutorial: Compression test of a radius bone slice
	Generating the model
	Solving the model
	Evaluating the accuracy of the solution
	Obtaining additional solution fields with n88derivedfields
	Using n88postfaim to generate the analysis file
	Determining load sharing distribution with n88postfaim
	Enabling compression for large model files

	Tutorial: Bending test of a radius bone with an uneven surface
	Generating the model with n88modelgenerator
	Using n88extractsets to obtain and visualize boundary conditions
	Numerical results

	Tutorial: Radius bending with elasto-plastic material properties
	Creating the model
	Solving the model
	Rendering yielded elements
	Numerical results
	A more careful calculation: incrementally applying the load

	Tutorial: Compressing a cube revisited using vtkbone
	Getting familiar with Python, VTK and Numpy
	Preliminaries: first lines of Python
	Reading the input file
	Ensuring connectivity
	Generating a mesh
	Defining materials and creating a material table
	Applying a compression test
	Writing an n88model file
	Modifying the file history and log

	Tutorial: Deflection of a cantilevered beam; adding custom boundary conditions and loads
	Importing the required python modules
	Setting command line options
	Generating the image data
	Generating a base model without boundary conditions
	Adding fixed boundary conditions
	Adding an applied load to tip of the beam
	Adding a convergence set
	Specifying sets for post-processing
	Documenting the model in the file log
	Solving the problem and comparing with theory

	Tutorial: A cantilevered beam with elastoplastic material properties
	Analytic solution
	Changes to the generation script
	Generating the model and verifying the material
	Solving the model
	Plastic strain distribution
	Comparison of finite element and analytic results
	Incremental loading and hysteresis

	Advanced custom model: A screw pull-out test
	The model: a screw pull-out test
	Preliminaries: first lines of Python
	Using a configuration file to store parameters
	Reading the segmented image file
	Converting the image data to elements
	Defining material properties
	Creating a vtkboneFiniteElementModel object
	Writing an n88model file
	Adding history and log fields
	Determining the screw orientation
	Adding a boundary condition: applying a displacement to the screw end
	Fixing the nodes in a ring on the bone surface
	Adding a convergence set
	Specifying sets for post-processing

	Tutorial: Radius compression with transformed boundary conditions for longitudinal bone strength estimates
	Script setup
	Optional function: Messages with a time stamp
	Utility function: Read a material file
	Model generator function: First steps
	Model generator function: Apply transformed boundary conditions
	Model generator function: Define model outputs and write n88model file
	Main function: Process input variables and call model generator function
	Example: Registered FE in practice
	Post-processing

	Additional examples

	Special Topics
	Efficient Handling of Large Numbers of Material Definitions
	Direct Mechanics
	Pistoia Failure Load Estimate

	Command Reference
	faim
	n88coarsen
	n88copymodel
	n88compress
	n88derivedfields
	n88directmechanics
	n88evaluate
	n88extractfields
	n88extractsets
	n88interpolatesolution
	n88modelgenerator
	n88modelinfo
	n88pistoia
	n88postfaim
	n88solver (_slt, _sla and _spt)
	n88tabulate

	Bibliography
	Books
	Articles

	Upgrading from previous versions
	Upgrading from Faim version 7
	Changing from vtkn88 to vtkbone

	Upgrading from Faim version 6
	Updating version 6 vtkn88 scripts to work with version 7

	Upgrading from Faim version 5
	Converting Faim version 5 file formats
	Updating 5 vtkn88 scripts to work with 6

	n88model File Format
	Converting a n88model file to and from a text file
	Example n88model file in CDL text format
	Specification
	Root group
	MaterialDefinitions group
	Parts group
	Constraints group
	Sets group
	Problems group
	Solutions group

	Writing code to read and write n88model files

	Automating the Processing of Multiple Models With Scripts
	A script to generate a mesh and solve it
	Scripting several models
	Unattended execution of scripts

	Index

